
Spirit 2.2
Joel de Guzman
Hartmut Kaiser

Copyright © 2001-2010 Joel de Guzman, Hartmut Kaiser

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Table of Contents
Preface ... 3
What's New .. 6
Introduction .. 9
Structure ... 14

Include ... 14
Abstracts .. 16

Syntax Diagram ... 16
Parsing Expression Grammar .. 18
Attributes .. 20

Attributes of Primitive Components ... 20
Attributes of Compound Components ... 21
More About Attributes of Compound Components .. 23
Attributes of Rules and Grammars ... 24

Qi - Writing Parsers .. 25
Tutorials ... 25

Quick Start .. 25
Warming up .. 25
Semantic Actions ... 28
Complex - Our first complex parser ... 30
Sum - adding numbers ... 31
Number List - stuffing numbers into a std::vector ... 33
Number List Redux - list syntax .. 34
Number List Attribute - one more, with style ... 35
Roman Numerals .. 36
Employee - Parsing into structs ... 41
Mini XML - ASTs! ... 46
Mini XML - Error Handling ... 52

Quick Reference .. 55
Common Notation .. 55
Qi Parsers ... 57
Compound Attribute Rules ... 61
Nonterminals ... 64
Semantic Actions ... 65
Phoenix .. 66

Reference ... 66
Parser Concepts ... 66
Basics .. 73
Parser API ... 77
Action .. 84
Auto .. 85
Auxiliary .. 88
Binary .. 97
Char ... 104

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Directive ... 111
Nonterminal .. 122
Numeric .. 127
Operator ... 143
Stream .. 161
String ... 164

Karma - Writing Generators .. 170
Tutorials ... 170

Quick Start .. 170
Warming up ... 170
Semantic Actions .. 173
Complex - A first more complex generator ... 176
Complex - Made easier .. 177
Number List - Printing Numbers From a std::vector ... 180
Matrix of Numbers - Printing Numbers From a Matrix ... 182

Quick Reference ... 182
Common Notation .. 182
Karma Generators ... 183
Compound Attribute Rules ... 193
Nonterminals ... 194
Semantic Actions .. 196
Phoenix .. 197

Reference .. 197
Generator Concepts ... 197
Basics ... 204
Generator API .. 207
Action .. 215
Auto ... 217
Auxiliary .. 220
Binary .. 228
Char ... 236
Directive ... 245
Nonterminal .. 266
Numeric .. 271
Operator ... 294
Stream .. 309
String ... 313

Performance Measurements .. 319
Performance of Numeric Generators ... 319

Lex - Writing Lexical Analyzers .. 325
Introduction to Spirit.Lex .. 325
Spirit.Lex Tutorials .. 328

Spirit.Lex Tutorials Overview .. 328
Quickstart 1 - A word counter using Spirit.Lex .. 328
Quickstart 2 - A better word counter using Spirit.Lex ... 332
Quickstart 3 - Counting Words Using a Parser .. 335

Abstracts ... 338
Lexer Primitives ... 338
Tokenizing Input Data ... 342
Lexer Semantic Actions ... 344
The Static Lexer Model .. 347

Quick Reference ... 352
Common Notation .. 352
Primitive Lexer Components ... 352
Semantic Actions .. 353
Phoenix .. 353
Supported Regular Expressions ... 354

Reference .. 357

2

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Lexer Concepts .. 357
Basics ... 360
Lexer API .. 361
Token definition Primitives ... 364

Advanced .. 365
In Depth .. 365

Parsers in Depth ... 365
Customization of Spirit's Attribute Handling .. 372

Determine if a Type Should be Treated as a Container (Qi and Karma) .. 373
Transform an Attribute to a Different Type (Qi and Karma) ... 376
Store a Parsed Attribute Value (Qi) ... 378
Store Parsed Attribute Values into a Container (Qi) .. 381
Re-Initialize an Attribute Value before Parsing (Qi) ... 386
Extract an Attribute Value to Generate Output (Karma) .. 387
Extract Attribute Values to Generate Output from a Container (Karma) ... 389
Create Components from Attributes .. 409

Supporting libraries ... 412
The multi pass iterator ... 412

Spirit FAQ ... 425
Notes ... 427

Porting from Spirit 1.8.x .. 427
Style Guide ... 433

Spirit Repository .. 434
Acknowledgments .. 434
References .. 438

This is the documentation of the newest version of Spirit (currently, V2.1). If you're looking for the documentation of Spirit's previous
version (formerly Spirit V1.8), see Spirit.Classic.

Preface
“Examples of designs that meet most of the criteria for "goodness" (easy to understand, flexible, efficient) are a
recursive-descent parser, which is traditional procedural code. Another example is the STL, which is a generic
library of containers and algorithms depending crucially on both traditional procedural code and on parametric
polymorphism.” --Bjarne Stroustrup

History

80s

In the mid-80s, Joel wrote his first calculator in Pascal. Such an unforgettable coding experience, he was amazed at how a mutually
recursive set of functions can model a grammar specification. In time, the skills he acquired from that academic experience became
very practical as he was tasked to do some parsing. For instance, whenever he needed to perform any form of binary or text I/O, he
tried to approach each task somewhat formally by writing a grammar using Pascal-like syntax diagrams and then a corresponding
recursive-descent parser. This process worked very well.

90s

The arrival of the Internet and the World Wide Web magnified the need for parsing a thousand-fold. At one point Joel had to write
an HTML parser for a Web browser project. Using the W3C formal specifications, he easily wrote a recursive-descent HTML
parser. With the influence of the Internet, RFC specifications were abundent. SGML, HTML, XML, email addresses and even those
seemingly trivial URLs were all formally specified using small EBNF-style grammar specifications. Joel had more parsing to do,
and he wished for a tool similar to larger parser generators such as YACC and ANTLR, where a parser is built automatically from
a grammar specification.

3

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This ideal tool would be able to parse anything from email addresses and command lines, to XML and scripting languages. Scalab-
ility was a primary goal. The tool would be able to do this without incurring a heavy development load, which was not possible with
the above mentioned parser generators. The result was Spirit.

Spirit was a personal project that was conceived when Joel was involved in R&D in Japan. Inspired by the GoF's composite and in-
terpreter patterns, he realized that he can model a recursive-descent parser with hierarchical-object composition of primitives (ter-
minals) and composites (productions). The original version was implemented with run-time polymorphic classes. A parser was
generated at run time by feeding in production rule strings such as:

"prod ::= {'A' | 'B'} 'C';"

A compile function compiled the parser, dynamically creating a hierarchy of objects and linking semantic actions on the fly. A very
early text can be found here: pre-Spirit.

2001 to 2006

Version 1.0 to 1.8 was a complete rewrite of the original Spirit parser using expression templates and static polymorphism, inspired
by the works of Todd Veldhuizen (Expression Templates, C++ Report, June 1995). Initially, the static-Spirit version was meant only
to replace the core of the original dynamic-Spirit. Dynamic-Spirit needed a parser to implement itself anyway. The original employed
a hand-coded recursive-descent parser to parse the input grammar specification strings. It was at this time when Hartmut Kaiser
joined the Spirit development.

After its initial "open-source" debut in May 2001, static-Spirit became a success. At around November 2001, the Spirit website had
an activity percentile of 98%, making it the number one parser tool at Source Forge at the time. Not bad for a niche project like a
parser library. The "static" portion of Spirit was forgotten and static-Spirit simply became Spirit. The library soon evolved to acquire
more dynamic features.

Spirit was formally accepted into Boost in October 2002. Boost is a peer-reviewed, open collaborative development effort around a
collection of free Open Source C++ libraries covering a wide range of domains. The Boost Libraries have become widely known as
an industry standard for design and implementation quality, robustness, and reusability.

2007

Over the years, especially after Spirit was accepted into Boost, Spirit has served its purpose quite admirably. Classic-Spirit (versions
prior to 2.0) focused on transduction parsing, where the input string is merely translated to an output string. Many parsers fall into
the transduction type. When the time came to add attributes to the parser library, it was done in a rather ad-hoc manner, with the
goal being 100% backward compatible with Classic Spirit. As a result, some parsers have attributes, some don't.

Spirit V2 is another major rewrite. Spirit V2 grammars are fully attributed (see Attribute Grammar) which means that all parser
components have attributes. To do this efficiently and elegantly, we had to use a couple of infrastructure libraries. Some did not exist,
some were quite new when Spirit debuted, and some needed work. Boost.Mpl is an important infrastructure library, yet is not sufficient
to implement Spirit V2. Another library had to be written: Boost.Fusion. Fusion sits between MPL and STL --between compile time
and runtime -- mapping types to values. Fusion is a direct descendant of both MPL and Boost.Tuples. Fusion is now a full-fledged
Boost library. Phoenix also had to be beefed up to support Spirit V2. The result is Boost.Phoenix. Last but not least, Spirit V2 uses
an Expression Templates library called Boost.Proto.

Even though it has evolved and matured to become a multi-module library, Spirit is still used for micro-parsing tasks as well as
scripting languages. Like C++, you only pay for features that you need. The power of Spirit comes from its modularity and extens-
ibility. Instead of giving you a sledgehammer, it gives you the right ingredients to easily create a sledgehammer.

New Ideas: Spirit V2

Just before the development of Spirit V2 began, Hartmut came across the StringTemplate library that is a part of the ANTLR parser
framework. 1 The concepts presented in that library lead Hartmut to the next step in the evolution of Spirit. Parsing and generation
are tightly connected to a formal notation, or a grammar. The grammar describes both input and output, and therefore, a parser library

1 Quote from http:/www.stringtemplate.org: It is a Java template engine (with ports for C# and Python) for generating source code, web pages, emails, or any other
formatted text output.

4

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net/dl_docs/pre-spirit.htm
http://en.wikipedia.org/wiki/Expression_templates
http://www.boost.org/
http://en.wikipedia.org/wiki/Attribute_grammar
http://www.boost.org/libs/mpl/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/fusion/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/tuple/index.html
http://www.boost.org/
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://en.wikipedia.org/wiki/Expression_templates
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../doc/html/proto.html
http://www.stringtemplate.org/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

should have a grammar driven output. This duality is expressed in Spirit by the parser library Spirit.Qi and the generator library
Spirit.Karma using the same component infastructure.

The idea of creating a lexer library well integrated with the Spirit parsers is not new. This has been discussed almost since Classic-
Spirit (pre V2) initially debuted. Several attempts to integrate existing lexer libraries and frameworks with Spirit have been made
and served as a proof of concept and usability (for example see Wave: The Boost C/C++ Preprocessor Library, and SLex: a fully
dynamic C++ lexer implemented with Spirit). Based on these experiences we added Spirit.Lex: a fully integrated lexer library to the
mix, allowing the user to take advantage of the power of regular expressions for token matching, removing pressure from the parser
components, simplifying parser grammars. Again, Spirit's modular structure allowed us to reuse the same underlying component
library as for the parser and generator libraries.

How to use this manual

Each major section (there are 3: Qi, Karma, and Lex) is roughly divided into 3 parts:

1. Tutorials: A step by step guide with heavily annotated code. These are meant to get the user acquainted with the library as quickly
as possible. The objective is to build the confidence of the user in using the library through abundant examples and detailed in-
structions. Examples speak volumes and we have volumes of examples!

2. Abstracts: A high level summary of key topics. The objective is to give the user a high level view of the library, the key concepts,
background and theories.

3. Reference: Detailed formal technical reference. We start with a quick reference -- an easy to use table that maps into the reference
proper. The reference proper starts with C++ concepts followed by models of the concepts.

Some icons are used to mark certain topics indicative of their relevance. These icons precede some text to indicate:

Table 1. Icons

MeaningNameIcon

Generally useful information (an aside that doesn't fit in the flow of the text)Note

Suggestion on how to do something (especially something that is not obvious)Tip

Important note on something to take particular notice ofImportant

Take special care with this - it may not be what you expect and may cause bad resultsCaution

This is likely to cause serious trouble if ignoredDanger

This documentation is automatically generated by Boost QuickBook documentation tool. QuickBook can be found in the Boost
Tools.

Support

Please direct all questions to Spirit's mailing list. You can subscribe to the Spirit General List. The mailing list has a searchable
archive. A search link to this archive is provided in Spirit's home page. You may also read and post messages to the mailing list

5

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/libs/wave/index.html
http://spirit.sourceforge.net/repository/applications/slex.zip
http://www.boost.org/tools/index.html
http://www.boost.org/tools/index.html
http://www.nabble.com/The-Spirit-Parser-Library-f3430.html
http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

through Spirit General NNTP news portal (thanks to Gmane). The news group mirrors the mailing list. Here is a link to the archives:
http://news.gmane.org/gmane.comp.parsers.spirit.general.

What's New
Spirit V2.2

What's changed in Spirit.Qi and Spirit.Karma from V2.1 (Boost V1.41.0) to 2.2
(Boost V1.42.0)

New Features

• Added auto_ component in Spirit.Qi and Spirit.Karma, added API functions qi::create_parser and karma::create_gen-
erator.

• Added auto_ based overloads for all API functions taking no attributes (see Qi API and Karma API).

• Added karma::columns directive.

• Added karma::symbols generator.

• The Spirit.Qi customization point push_back_container now returns a bool to report whether the item has been added to the
container.

• Added an overload for karma::maxwidth directive allowing to specify an additional parameter (any compatible output iterator)
receiving the 'overspilled' output (output not fitting into the maxwidth limit).

• It is now possible to use Phoenix expressions as Spirit.Karma attributes.

• Added basic_istream_iterator<Char, Traits> usable as an equivalent for std::istream_iterator except its a
ForwardIterator allowing to parse directly from any std::basic_istream.

• Added qi::matches directive.

Bug Fixes

• Fixed karma::alternatives to work with embedded containers of hold_any (i.e. constructs like *stream | "empty" (which fixes
the Karma example basic_facilities.cpp).

• Fixed numeric Spirit.Karma generators for character types.

• Fixed qi::repeat[] for unused attributes.

• Fixed rare compilation problem in karma::repeat[].

• Fixed sequences in Spirit.Qi and Spirit.Karma to compile properly if the attribute is a (STL) container of (STL) containers.

• Fixed a problem in lex::token_def::what.

• Fixed Spirit.Qi symbols not to match substrings anymore. Added qi::symbols::prefix_find to allow matching of (prefix-)
substrings.

• Inherited parameters for rule's usually have to be wrapped in function objects (i.e. phoenix::val), for integral values this was
not necessary. Now all string types can be passed without being wrapped as well (i.e. std::string, char const*, etc.).

• Added concept checks to all relevant Spirit.Qi API functions enforcing the iterator to be at least of the type std::forward_iter-
ator_tag.

6

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

news://news.gmane.org/gmane.comp.spirit.general
http://www.gmane.org
http://news.gmane.org/gmane.comp.parsers.spirit.general
http://www.sgi.com/tech/stl/ForwardIterator.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Fixed the qi::match and qi::phrase_match set of API functions not to internally utilize a std::stream_iterator anymore
as this iterator is of the type std::input_iterator_tag only, which is not sufficient for Spirit.Qi.

Spirit V2.1

What's changed in Spirit.Qi and Spirit.Karma from V2.0 (Boost V1.37.0) to 2.1
(Boost V1.41.0)

• Spirit is now based on the newest version of Boost.Proto

• qi::phrase_parse, qi::phrase_format now post-skip by default.

• karma::generate_delimited and karma::format_delimited now don't do pre- delimiting by default.

• Changed parameter sequence of qi::phrase_parse, qi::phrase_match, karma::generate_delimited, and
match_delimited. The attribute is now always the last parameter.

• Added new overloads of those functions allowing to explicitely specify the post-skipping and pre-delimiting behavior.

• Added multi attribute API functions

• Removed grammar_def<>

• Removed functions make_parser() and make_generator()

• Removed qi::none and karma::none

• Sequences and lists now accept a standard container as their attribute

• The string placeholder terminal now can take other strings as its parameter (i.e. std::string)

• All terminals taking literals now accept a (lazy) function object as well

• All placeholders for terminals and directives (such as int_, double_, verbatim, etc.) were previously defined in the namespace
boost::spirit only. Now these are additionally imported into the namespaces spirit::qi, spirit::karma, and spirit::lex
(if they are supported by the corresponding sub-library).

• The terminal placeholders char_ and string are not defined in the namespace boost::spirit anymore as they have been
moved to the character set namespaces, allowing to do proper character set handling based on the used namespace (as spirit::as-
cii, etc.)

• The uint, ushort, ulong, and byte terminal placeholders have been renamed to uint_, ushort_, ulong_, and byte_.

• qi::skip[] now re-enables outer skipper if used inside lexeme[]

• Added karma::maxwidth[] directive (see maxwidth)

• Added karma::omit[] allowing to consume the attribute of subject generator without emitting any output (see omit).

• Added karma::buffer[] allowing to avoid unwanted output to be generated in case of a generator failing in the middle of a
sequence (see buffer).

• karma::delimit[] now re-enables outer delimiter if used inside verbatim[]

• Karma: added and-predicate (operator&()) and not-predicate (operator!()) Both now always consume an attribute.

• Karma: changed semantics of char_(), string(), int_() et.al., and double_() et.al.: all of these generators now always
expose an attribute. If they do not have an associated attribute, they generate their immediate literal. If they have an associated
attribute, the generators first test if the attribute value is equal to the immediate literal. They fail and do not generate anything if
those are not equal. Otherwise they generate their immediate literal. For more information see for instance int_.

7

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../doc/html/proto.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• karma::lit() can now be used to generate integer and floating point numbers

• qi::rule and karma::rule now can be directly initialized using their copy constructor. I.e. this works now: qi::rule<...>
r = ...some parser...;.

• Added qi::attr() exposing its immediate parameter as its attribute.

• Added boolean parsers and generators (bool_, true_, false_).

• Added attr_cast<> enabling in place attribute type conversion in Qi and Karma grammars.

• Almost all Karma generators now accept optional<> attributes and will fail generating if this is not initialized.

• Qi and Karma rules now automatically detect whether to apply auto-rule semantics or not (no need for using operator%=()
anymore, even if it's still existing). Auto-rule semantics are applied if the right hand side has no semantic actions attached to any
of the elements. This works for rule initialization and assignment.

• Qi and Karma rules now do intrinsic attribute transformation based on the attribute customization point transform_attribute.

• All char_ parsers now always expose an attribute. Earlier char_(...) didn't expose an attribute while char_ did. If you need a
literal parser not exposing any attribute use lit(...) instead.

• The qi::int_spec, qi::real_spec, karma::int_spec, and karma real_spec types do not exist anymore. These have been replaced with
qi::int_parser, qi::real_parser, karma::int_generator, and karma::real_generator.

What's changed in Spirit.Lex from V2.0 (Boost V1.37.0) to 2.1 (Boost V1.41.0)

Here is a list of changes in Spirit.Lex since version 2.0. Spirit.Lex 2.1 is a complete rewrite of the Spirit.Lex distributed with Boost
V1.37. As with all code portions of the Spirit library, Spirit.Lex is usable as standalone piece. Spirit.Lex now uses the infrastructure
provided by Spirit version 2.1.

• The lex::lexer_def class has been renamed to lex::lexer, while the original class lex::lexer does not exist anymore. This simplifies
the creation of lexers.

• The lex::lexer class does not have the function def(Self& self) anymore, token definitions can be added to the lexer at any
time, usually in the constructor of the user defined lexer class:

template <typename Lexer>
struct example_tokens : lex::lexer<Lexer>
{
 example_tokens()

{
// your token definitions here
this->self = ...

}
};

• The new lexer class can now be used directly. The function make_lexer() has been removed.

• The lex::tokenize_and_parse() and lex::tokenize_and_phrase_parse() functions have been changed to match the
parameter sequence as implemented by the qi::parse() and qi::phrase_parse() functions. Both take an arbitrary number
of attribute arguments as the last parameters. This argument list is limited by the macro SPIRIT_ARGUMENTS_LIMIT.

• The lex::lexertl_lexer, and lex::lexertl_token classes have been moved to the lex::lexertl namespace and the
names have been changed to lex::lexertl::lexer, lex::lexertl::token. This also applies to the lex::lexert_act-
or_lexer, and the static_lexertl_* family of types.

• The class lex::lexertl_token_set has been removed. This functionality is now available from the lexer class.

8

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• The Spirit.Lex library has been updated to use the newest version of Ben Hansons Lexertl lexer construction library (Boost review
pending).

• The lex::lexer<Lexer> template constructor now takes an optional parameter specifying the match_flags to be used for
table generation. Currently, there are the following flags available:

match_flags::match_default, // no flags
match_flags::match_not_dot_newline, // the regex '.' doesn't match newlines
match_flags::match_icase // all matching operations are case insensitive

If no parameter is passed to the constructor, match_flags::match_default is used, i.e. the . matches newlines and matching
is case sensitive.

• The char_() and string() placeholders can now be used for token definitions and are synonymous with token_def.

• Lexer semantic actions now have to conform to a changed interface (see Lexer Semantic Actions for details).

• Added placeholder symbols usable from the inside of lexer semantic actions while using Phoenix: lex::_start, lex::_end,
lex::_eoi, lex::_state, lex::_val, and lex::_pass (see Lexer Semantic Actions for more details).

• Added (lazy) support functions usable from the inside of lexer semantic actions while using Phoenix: lex::more(), lex::less(),
and lex::lookahead() (see Lexer Semantic Actions for more details).

• Removed lex::omitted in favor of lex::omit to unify the overall interface.

Spirit Classic

The Spirit V1.8.x code base has been integrated with Spirit V2. It is now called Spirit.Classic. Since the directory structure has
changed (the Spirit Classic headers are now moved to the $BOOST_ROOT/boost/spirit/home/classic directory), we created forwarding
headers allowing existing applications to compile without any change. However, these forwarding headers are deprecated, which
will result in corresponding warnings generated for each of the headers starting with Boost V1.38. The forwarding headers are ex-
pected to be removed in the future.

The recommended way of using Spirit Classic now is to include header files from the directory $BOOST_ROOT/boost/spirit/include.
All Spirit Classic headers in this directory have 'classic_' prefixed to their name. For example the include

#include <boost/spirit/core/core.hpp>

now should be written as:

#include <boost/spirit/include/classic_core.hpp>

To avoid namespace conflicts with the new Spirit V2 library we moved Spirit Classic into the namespace boost::spirit::classic.
All references to the former namespace boost::spirit need to be adjusted as soon as the header names are corrected as described
above. As an alternative you can define the preprocessor constant BOOST_SPIRIT_USE_OLD_NAMESPACE, which will force the
Spirit Classic code to be in the namespace boost::spirit as before. This is not recommended, though, as it may result in naming
clashes.

The change of the namespace will be automatically deactivated whenever the deprecated include files are being used. This ensures
full backwards compatibility for existing applications.

Introduction
Boost Spirit is an object-oriented, recursive-descent parser and output generation library for C++. It allows you to write grammars
and format descriptions using a format similar to Extended Backus Naur Form (EBNF) 2 directly in C++. These inline grammar

2 ISO-EBNF

9

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.benhanson.net/lexertl.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.cl.cam.ac.uk/%7Emgk25/iso-14977.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

specifications can mix freely with other C++ code and, thanks to the generative power of C++ templates, are immediately executable.
In retrospect, conventional compiler-compilers or parser-generators have to perform an additional translation step from the source
EBNF code to C or C++ code.

The syntax and semantics of the libraries' API directly form domain-specific embedded languages (DSEL). In fact, Spirit exposes
3 different DSELs to the user:

• one for creating parser grammars,

• one for the specification of the required tokens to be used for parsing,

• and one for the description of the required output formats.

Since the target input grammars and output formats are written entirely in C++ we do not need any separate tools to compile, preprocess
or integrate those into the build process. Spirit allows seamless integration of the parsing and output generation process with other
C++ code. This often allows for simpler and more efficient code.

Both the created parsers and generators are fully attributed, which allows you to easily build and handle hierarchical data structures
in memory. These data structures resemble the structure of the input data and can directly be used to generate arbitrarily-formatted
output.

The figure below depicts the overall structure of the Boost Spirit library. The library consists of 4 major parts:

• Spirit.Classic: This is the almost-unchanged code base taken from the former Boost Spirit V1.8 distribution. It has been moved
into the namespace boost::spirit::classic. A special compatibility layer has been added to ensure complete compatibility with ex-
isting code using Spirit V1.8.

• Spirit.Qi: This is the parser library allowing you to build recursive descent parsers. The exposed domain-specific language can
be used to describe the grammars to implement, and the rules for storing the parsed information.

• Spirit.Lex: This is the library usable to create tokenizers (lexers). The domain-specific language exposed by Spirit.Lex allows you
to define regular expressions used to match tokens (create token definitions), associate these regular expressions with code to be
executed whenever they are matched, and to add the token definitions to the lexical analyzer.

• Spirit.Karma: This is the generator library allowing you to create code for recursive descent, data type-driven output formatting.
The exposed domain-specific language is almost equivalent to the parser description language used in Spirit.Qi, except that it is
used to describe the required output format to generate from a given data structure.

10

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Figure 1. The overall structure of the Boost Spirit library

The three components, Spirit.Qi, Spirit.Karma and Spirit.Lex, are designed to be used either standalone, or together. The general
methodology is to use the token sequence generated by Spirit.Lex as the input for a parser generated by Spirit.Qi. On the opposite
side of the equation, the hierarchical data structures generated by Spirit.Qi are used for the output generators created using Spirit.Karma.
However, there is nothing to stop you from using any of these components all by themselves.

The figure below shows the typical data flow of some input being converted to some internal representation. After some (optional)
transformation these data are converted back into some different, external representation. The picture highlights Spirit's place in this
data transformation flow.

Figure 2. The place of Spirit.Qi and Spirit.Karma in a data transformation flow of a typical application

11

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

A Quick Overview of Parsing with Spirit.Qi

Spirit.Qi is Spirit's sublibrary dealing with generating parsers based on a given target grammar (essentially a format description of
the input data to read).

A simple EBNF grammar snippet:

group ::= '(' expression ')'
factor ::= integer | group
term ::= factor (('*' factor) | ('/' factor))*
expression ::= term (('+' term) | ('-' term))*

is approximated using facilities of Spirit's Qi sublibrary as seen in this code snippet:

group = '(' >> expression >> ')';
factor = integer | group;
term = factor >> *(('*' >> factor) | ('/' >> factor));
expression = term >> *(('+' >> term) | ('-' >> term));

Through the magic of expression templates, this is perfectly valid and executable C++ code. The production rule expression is,
in fact, an object that has a member function parse that does the work given a source code written in the grammar that we have just
declared. Yes, it's a calculator. We shall simplify for now by skipping the type declarations and the definition of the rule integer
invoked by factor. Now, the production rule expression in our grammar specification, traditionally called the start symbol,
can recognize inputs such as:

12345
-12345
+12345
1 + 2
1 * 2
1/2 + 3/4
1 + 2 + 3 + 4
1 * 2 * 3 * 4
(1 + 2) * (3 + 4)
(-1 + 2) * (3 + -4)
1 + ((6 * 200) - 20) / 6
(1 + (2 + (3 + (4 + 5))))

Certainly we have modified the original EBNF syntax. This is done to conform to C++ syntax rules. Most notably we see the
abundance of shift >> operators. Since there are no 'empty' operators in C++, it is simply not possible to write something like:

a b

as seen in math syntax, for example, to mean multiplication or, in our case, as seen in EBNF syntax to mean sequencing (b should
follow a). Spirit.Qi uses the shift >> operator instead for this purpose. We take the >> operator, with arrows pointing to the right, to
mean "is followed by". Thus we write:

a >> b

The alternative operator | and the parentheses () remain as is. The assignment operator = is used in place of EBNF's ::=. Last but
not least, the Kleene star *, which in this case is a postfix operator in EBNF becomes a prefix. Instead of:

a* //... in EBNF syntax,

we write:

12

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

*a //... in Spirit.

since there are no postfix stars, *, in C/C++. Finally, we terminate each rule with the ubiquitous semi-colon, ;.

A Quick Overview of Output Generation with Spirit.Karma

Spirit not only allows you to describe the structure of the input, it also enables the specification of the output format for your data
in a similar way, and based on a single syntax and compatible semantics.

Let's assume we need to generate a textual representation from a simple data structure such as a std::vector<int>. Conventional
code probably would look like:

std::vector<int> v (initialize_and_fill());
std::vector<int>::iterator end = v.end();
for (std::vector<int>::iterator it = v.begin(); it != end; ++it)
 std::cout << *it << std::endl;

which is not very flexible and quite difficult to maintain when it comes to changing the required output format. Spirit's sublibrary
Karma allows you to specify output formats for arbitrary data structures in a very flexible way. The following snippet is the Karma
format description used to create the same output as the traditional code above:

*(int_ << eol)

Here are some more examples of format descriptions for different output representations of the same std::vector<int>:

Table 2. Different output formats for `std::vector<int>`

DescriptionExampleFormat

Comma separated list of integers[1,8,10,]'[' << *(int_ << ',') << ']'

Comma separated list of integers in parenthesis(1),(8),(10),*('(' << int_ << ')' << ',')

A list of hexadecimal numbers18a*hex

A list of floating point numbers1.0,8.0,10.0,*(double_ << ',')

We will see later in this documentation how it is possible to avoid printing the trailing ','.

Overall, the syntax is similar to Spirit.Qi with the exception that we use the << operator for output concatenation. This should be
easy to understand as it follows the conventions used in the Standard's I/O streams.

Another important feature of Spirit.Karma allows you to fully decouple the data type from the output format. You can use the same
output format with different data types as long as these conform conceptually. The next table gives some related examples.

13

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 3. Different data types usable with the output format `*(int_ << eol)`

DescriptionData type

C style arraysint i[4]

Standard vectorstd::vector<int>

Standard liststd::list<int>

Boost arrayboost::array<long, 20>

Structure

Include
Spirit is a header file only library. There are no libraries to link to. This section documents the structure of the Spirit headers.

Spirit contains five sub-libraries plus a 'support' module where common support classes are placed:

• Classic

• Qi

• Karma

• Lex

• Phoenix

• Support

The top Spirit directory is:

BOOST_ROOT/boost/spirit

Currently, the directory contains:

[actor] [attribute] [core] [debug]
[dynamic] [error_handling][home] [include]
[iterator] [meta] [phoenix] [repository]
[symbols] [tree] [utility]

These include some old v1.8 directories that are now depracated. These are: actor, attribute, core, debug, dynamic, error_handling,
iterator, meta, phoenix, symbols, tree and utility. There is no guarantee that these directories will still be present in future versions
of Spirit. We only keep them for backward compatibility. Please be warned.

Each directory (except include, home, and repository) has a corresponding header file that contains forwarding includes of each
relevant include file that the directory contains. For example, there exists a <boost/spirit/actor.hpp> header file which includes all
the relevant files from the boost/spirit/actor directory.

To distinguish between Spirit versions, you can inspect the version file:

<boost/spirit/version.hpp>

using the preprocessor define

14

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

SPIRIT_VERSION

It is a hex number where the first two digits determine the major version while the last two digits determine the minor version. For
example:

#define SPIRIT_VERSION 0x2010 // version 2.1

The include directory at:

BOOST_ROOT/boost/spirit/include

is a special flat directory that contains all the Spirit headers. To accomodate the flat structure, the headers are prefixed with the sub-
library name:

• classic_

• karma_

• lex_

• phoenix1_

• phoenix_

• qi_

• support_

For example, if you used to include <boost/spirit/actor.hpp>, which is now a deprecated header, you should instead include
<boost/spirit/include/classic_actor.hpp>

If you want to simply include the main sub-library name, then you can include:

• <boost/spirit/include/classic.hpp>

• <boost/spirit/include/karma.hpp>

• <boost/spirit/include/lex.hpp>

• <boost/spirit/include/phoenix1.hpp>

• <boost/spirit/include/phoenix.hpp>

• <boost/spirit/include/qi.hpp>

• <boost/spirit/include/support.hpp>

The home directory:

BOOST_ROOT/boost/spirit/home

is the real home of Spirit. It is the place where the various sub-libraries actually exist. The home directory contains:

[classic] [karma] [lex]
[phoenix] [qi] [support]

As usual, these directories have their corresponding include files:

15

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• <boost/spirit/home/classic.hpp>

• <boost/spirit/home/karma.hpp>

• <boost/spirit/home/lex.hpp>

• <boost/spirit/home/phoenix.hpp>

• <boost/spirit/home/qi.hpp>

• <boost/spirit/home/support.hpp>

The various sub-libraries include files can be found in each sub-directory containing the particular sub-library. The include structure
of a sub-library is covered in its documentation. For consistency, each library follows the same scheme as above.

To keep it simple, you should use the flat include directory at boost/spirit/include.

For some additional information about the rationale you might want to have a look at the FAQ entry Header Hell.

The subdirectory boost/spirit/repository does not belong to the main Spirit distribution. For more information please refer
to: Spirit Repository.

Abstracts

Syntax Diagram
In the next section, we will deal with Parsing Expression Grammars (PEG) 3 , a variant of Extended Backus-Naur Form (EBNF) 4

with a different interpretation. It is easier to understand PEG using Syntax Diagrams. Syntax diagrams represent a grammar graph-
ically. It was used extensibly by Niklaus Wirth 5 in the "Pascal User Manual". Syntax Diagrams are easily understandable by pro-
grammers due to their similarity to flow charts. The isomorphism of the diagrams and functions make them ideal for representing
Recursive Descent parsers which are essentially mutually recursive functions.

Historically, Parsing Expression Grammars have been used for describing grammars for parsers only (hence the name). In Spirit we
use a very similar notation for output generation as well. Almost all the concepts described here are equally applicable both to Spirit.Qi
parsers and to Spirit.Karma generators.

Elements

All diagrams have one entry and one exit point. Arrows connect all possible paths through the grammar from the entry point to the
exit point.

Terminals are represented by round boxes. Terminals are atomic and usually represent plain characters, strings or tokens.

Non-terminals are represented by boxes. Diagrams are modularized using named non-terminals. A complex diagram can be broken
down into a set of non-terminals. Non-terminals also allow recursion (i.e. a non-terminal can call itself).

3 Bryan Ford: Parsing Expression Grammars: A Recognition-Based Syntactic Foundation, http://pdos.csail.mit.edu/~baford/packrat/popl04/
4 Richard E. Pattis: EBNF: A Notation to Describe Syntax, http://www.cs.cmu.edu/~pattis/misc/ebnf.pdf
5 Niklaus Wirth: The Programming Language Pascal. (July 1973)

16

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://pdos.csail.mit.edu/~baford/packrat/popl04/
http://www.cs.cmu.edu/~pattis/misc/ebnf.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Constructs

The most basic composition is the Sequence. B follows A:

The ordered choice henceforth we will call alternatives. In PEG, ordered choice and alternatives are not quite the same. PEG allows
ambiguity of choice where one or more branches can succeed. In PEG, in case of ambiguity, the first one always wins.

The optional (zero-or-one):

Now, the loops. We have the zero-or-more and one-or-more:

Take note that, as in PEG, these loops behave greedily. If there is another 'A' just before the end-point, it will always fail because
the preceding loop has already exhausted all 'A's and there is nothing more left. This is a crucial difference between PEG and general
Context Free Grammars (CFGs). This behavior is quite obvious with syntax diagrams as they resemble flow-charts.

17

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Predicates

Now, the following are Syntax Diagram versions of PEG predicates. These are not traditionally found in Syntax Diagrams. These
are special extensions we invented to closely follow PEGs.

First, we introduce a new element, the Predicate:

This is similar to the conditionals in flow charts where the 'No' branch is absent and always signals a failed parse.

We have two versions of the predicate, the And-Predicate and the Not-Predicate:

The And-Predicate tries the predicate, P, and succeeds if P succeeds, or otherwise fail. The opposite is true with the Not-Predicate.
It tries the predicate, P, and fails if P succeeds, or otherwise succeeds. Both versions do a look-ahead but do not consume any input
regardless if P succeeds or not.

Parsing Expression Grammar
Parsing Expression Grammars (PEG) 6 are a derivative of Extended Backus-Naur Form (EBNF) 7 with a different interpretation,
designed to represent a recursive descent parser. A PEG can be directly represented as a recursive-descent parser.

Like EBNF, PEG is a formal grammar for describing a formal language in terms of a set of rules used to recognize strings of this
language. Unlike EBNF, PEGs have an exact interpretation. There is only one valid parse tree (see Abstract Syntax Tree) for each
PEG grammar.

Sequences

Sequences are represented by juxtaposition like in EBNF:

a b

The PEG expression above states that, in order for this to succeed, b must follow a. Here's the syntax diagram:

6 Bryan Ford: Parsing Expression Grammars: A Recognition-Based Syntactic Foundation, http://pdos.csail.mit.edu/~baford/packrat/popl04/
7 Richard E. Pattis: EBNF: A Notation to Describe Syntax, http://www.cs.cmu.edu/~pattis/misc/ebnf.pdf

18

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://pdos.csail.mit.edu/~baford/packrat/popl04/
http://www.cs.cmu.edu/~pattis/misc/ebnf.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Here's a trivial example:

'x' digit

which means the character x must be followed by a digit.

Note

In Spirit.Qi, we use the >> for sequences since C++ does not allow juxtaposition, while in Spirit.Karma we use the
<< instead.

Alternatives

Alternatives are represented in PEG using the slash:

a / b

Note

In Spirit.Qi and Spirit.Karma, we use the | for alternatives just as in EBNF.

Alternatives allow for choices. The expression above reads: try to match a. If a succeeds, success, if not try to match b. This is a bit
of a deviation from the usual EBNF interpretation where you simply match a or b. Here's the syntax diagram:

PEGs allow for ambiguity in the alternatives. In the expression above, both a or b can both match an input string. However, only
the first matching alternative is valid. As noted, there can only be one valid parse tree.

Loops

Again, like EBNF, PEG uses the regular-expression Kleene star and the plus loops:

a*
a+

Note

Spirit.Qi and Spirit.Karma use the prefix star and plus since there is no postfix star or plus in C++.

19

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Here are the syntax diagrams:

The first, called the Kleene star, matches zero or more of its subject a. The second, plus, matches one ore more of its subject a.

Unlike EBNF, PEGs have greedy loops. It will match as much as it can until its subject fails to match without regard to what follows.
The following is a classic example of a fairly common EBNF/regex expression failing to match in PEG:

alnum* digit

In PEG, alnum will eat as much alpha-numeric characters as it can leaving nothing more left behind. Thus, the trailing digit will get
nothing. Loops are simply implemented in recursive descent code as for/while loops making them extremely efficient. That is a
definite advantage. On the other hand, those who are familiar with EBNF and regex behavior might find the behavior a major gotcha.
PEG provides a couple of other mechanisms to circumvent this. We will see more of these other mechanisms shortly.

Difference

In some cases, you may want to restrict a certain expression. You can think of a PEG expression as a match for a potentially infinite
set of strings. The difference operator allows you to restrict this set:

a - b

The expression reads: match a but not b.

Note

There is no difference operator in Spirit.Karma, as the concept does not make sense in the context of output gener-
ation.

Attributes

Attributes of Primitive Components

Parsers and generators in Spirit are fully attributed. Spirit.Qi parsers always expose an attribute specific to their type. This is called
synthesized attribute as it is returned from a successful match representing the matched input sequence. For instance, numeric parsers,
such as int_ or double_, return the int or double value converted from the matched input sequence. Other primitive parser
components have other intuitive attribute types, such as for instance int_ which has int, or ascii::char_ which has char.
Forprimitive parsers apply the normal C++ convertibility rules: you can use any Other primitive parser components have other intu-
itive attribute types, e.g. the parser ascii::char_ has char as attribute type. For primitive parsers the normal C++ convertibility
rules apply: you can use any C++ type to receive the parsed value as long as the attribute type of the parser is convertible to the type

20

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

provided. The following example shows how a synthesized parser attribute (the int value) is extracted by calling the API function
qi::parse:

int value = 0;
std::string str("123");
std::string::iterator strbegin = str.begin();
qi::parse(strbegin, str.end(), int_, value); // value == 123

The attribute type of a generator defines what data types this generator is able to consume in order to produce its output. Spirit.Karma
generators always expect an attribute specific to their type. This is called consumed attribute and is expected to be passed to the
generator. The consumed attribute is most of the time the value the generator is designed to emit output for. For primitive generators
the normal C++ convertibility rules apply. Any data type convertible to the attribute type of a primitive generator can be used to
provide the data to generate. We present a similar example as above, this time the consumed attribute of the int_ generator (the
int value) is passed to the API function karma::generate:

int value = 123;
std::string str;
std::back_insert_iterator<std::string> out(str);
karma::generate(out, int_, value); // str == "123"

Other primitive generator components have other intuitive attribute types, very similar to the corresponding parser components. For
instance, the ascii::char_ generator has char as consumed attribute. For a full list of available parser and generator primitives
and their attribute types please see the sections Qi Parsers and Karma Generators.

Attributes of Compound Components

Spirit.Qi and Spirit.Karma implement well defined attribute type propagation rules for all compound parsers and generators, such
as sequences, alternatives, Kleene star, etc. The main attribute propagation rule for a sequences is for instance:

Sequence attribute propagation ruleLibrary

a: A, b: B --> (a >> b): tuple<A, B>Qi

a: A, b: B --> (a << b): tuple<A, B>Karma

which reads as:

Given a and b are parsers (generators), and A is the attribute type of a, and B is the attribute type of b, then the at-
tribute type of a >> b (a << b) will be tuple<A, B>.

Note

The notation tuple<A, B> is used as a placeholder expression for any fusion sequence holding the types A and
B, such as boost::fusion::tuple<A, B> or std::pair<A, B> (for more information see Boost.Fusion).

As you can see, in order for a type to be compatible with the attribute type of a compound expression it has to

• either be convertible to the attribute type,

• or it has to expose certain functionalities, i.e. it needs to conform to a concept compatible with the component.

Each compound component implements its own set of attribute propagation rules. For a full list of how the different compound
generators consume attributes see the sections Parser Compound Attribute Rules and Generator Compound Attribute Rules.

21

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/fusion/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The Attribute of Sequence Parsers and Generators

Sequences require an attribute type to expose the concept of a fusion sequence, where all elements of that fusion sequence have to
be compatible with the corresponding element of the component sequence. For example, the expression:

Sequence expressionLibrary

double_ >> double_Qi

double_ << double_Karma

is compatible with any fusion sequence holding two types, where both types have to be compatible with double. The first element
of the fusion sequence has to be compatible with the attribute of the first double_, and the second element of the fusion sequence
has to be compatible with the attribute of the second double_. If we assume to have an instance of a std::pair<double,
double>, we can directly use the expressions above to do both, parse input to fill the attribute:

// the following parses "1.0 2.0" into a pair of double
std::string input("1.0 2.0");
std::string::iterator strbegin = input.begin();
std::pair<double, double> p;
qi::phrase_parse(strbegin, input.end(),
 qi::double_ >> qi::double_, // parser grammar
 qi::space, // delimiter grammar
 p); // attribute to fill while parsing

and generate output for it:

// the following generates: "1.0 2.0" from the pair filled above
std::string str;
std::back_insert_iterator<std::string> out(str);
karma::generate_delimited(out,
 karma::double_ << karma::double_, // generator grammar (format description)
 karma::space, // delimiter grammar
 p); // data to use as the attribute

(where the karma::space generator is used as the delimiter, allowing to automatically skip/insert delimiting spaces in between all
primitives).

Tip

For sequences only: Spirit.Qi and Spirit.Karma expose a set of API functions usable mainly with sequences. Very
much like the functions of the scanf and printf families these functions allow to pass the attributes for each of
the elements of the sequence separately. Using the corresponding overload of Qi's parse or Karma's generate()
the expression above could be rewritten as:

double d1 = 0.0, d2 = 0.0;
qi::phrase_parse(begin, end, qi::double_ >> qi::double_, qi::space, d1, d2);
karma::generate_delim↵
ited(out, karma::double_ << karma::double_, karma::space, d1, d2);

where the first attribute is used for the first double_, and the second attribute is used for the second double_.

The Attribute of Alternative Parsers and Generators

Alternative parsers and generators are all about - well - alternatives. In order to store possibly different result (attribute) types from
the different alternatives we use the data type Boost.Variant. The main attribute propagation rule of these components is:

22

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/html/variant.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

a: A, b: B --> (a | b): variant<A, B>

Alternatives have a second very important attribute propagation rule:

a: A, b: A --> (a | b): A

often allowing to simplify things significantly. If all sub expressions of an alternative expose the same attribute type, the overall al-
ternative will expose exactly the same attribute type as well.

More About Attributes of Compound Components

While parsing input or generating output it is often desirable to combine some constant elements with variable parts. For instance,
let us look at the example of parsing or formatting a complex number, which is written as (real, imag), where real and imag
are the variables representing the real and imaginary parts of our complex number. This can be achieved by writing:

Sequence expressionLibrary

'(' >> double_ >> ", " >> double_ >> ')'Qi

'(' << double_ << ", " << double_ << ')'Karma

Fortunately, literals (such as '(' and ", ") do not expose any attribute (well actually, they do expose the special type unused_type,
but in this context unused_type is interpreted as if the component does not expose any attribute at all). It is very important to un-
derstand that the literals don't consume any of the elements of a fusion sequence passed to this component sequence. As said, they
just don't expose any attribute and don't produce (consume) any data. The following example shows this:

// the following parses "(1.0, 2.0)" into a pair of double
std::string input("(1.0, 2.0)");
std::string::iterator strbegin = input.begin();
std::pair<double, double> p;
qi::parse(strbegin, input.end(),

'(' >> qi::double_ >> ", " >> qi::double_ >> ')', // parser grammar
 p); // attribute to fill while parsing

and here is the equivalent Spirit.Karma code snippet:

// the following generates: (1.0, 2.0)
std::string str;
std::back_insert_iterator<std::string> out(str);
generate(out,

'(' << karma::double_ << ", " << karma::double_ << ')', // generator grammar (format descrip↵
tion)
 p); // data to use as the attribute

where the first element of the pair passed in as the data to generate is still associated with the first double_, and the second element
is associated with the second double_ generator.

This behavior should be familiar as it conforms to the way other input and output formatting libraries such as scanf, printf or
boost::format are handling their variable parts. In this context you can think about Spirit.Qi's and Spirit.Karma's primitive com-
ponents (such as the double_ above) as of being typesafe placeholders for the attribute values.

23

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Tip

Similarly to the tip provided above, this example could be rewritten using Spirit's multi-attribute API function:

double d1 = 0.0, d2 = 0.0;
qi::parse(begin, end, '(' >> qi::double_ >> ", " >> qi::double_ << ')', d1, d2);
karma::generate(out, '(' << karma::double_ << ", " << karma::double_ << ')', d1, d2);

which provides a clear and comfortable syntax, more similar to the placeholder based syntax as exposed by printf
or boost::format.

Let's take a look at this from a more formal perspective. The sequence attribute propagation rules define a special behavior if gener-
ators exposing unused_type as their attribute are involved (see Generator Compound Attribute Rules):

Sequence attribute propagation ruleLibrary

a: A, b: Unused --> (a >> b): AQi

a: A, b: Unused --> (a << b): AKarma

which reads as:

Given a and b are parsers (generators), and A is the attribute type of a, and unused_type is the attribute type of
b, then the attribute type of a >> b (a << b) will be A as well. This rule applies regardless of the position the
element exposing the unused_type is at.

This rule is the key to the understanding of the attribute handling in sequences as soon as literals are involved. It is as if elements
with unused_type attributes 'disappeared' during attribute propagation. Notably, this is not only true for sequences but for any
compound components. For instance, for alternative componets the corresponding rule is:

a: A, b: Unused --> (a | b): A

again, allowing to simplify the overall attribute type of an expression.

Attributes of Rules and Grammars

Nonterminals are well known from parsers where they are used as the main means of constructing more complex parsers out of
simpler ones. The nonterminals in the parser world are very similar to functions in an imperative programming language. They can
be used to encapsulate parser expressions for a particular input sequence. After being defined, the nonterminals can be used as 'normal'
parsers in more complex expressions whenever the encapsulated input needs to be recognized. Parser nonterminals in Spirit.Qi may
accept parameters (inherited attributes) and usually return a value (the synthesized attribute).

Both, the types of the inherited and the synthesized attributes have to be explicitely specified while defining the particular grammar
or the rule (the Spirit Repository additionally has subrules which conform to a similar interface). As an example, the following
code declares a Spirit.Qi rule exposing an int as its synthesized attribute, while expecting a single double as its inherited attribute
(see the section about the Spirit.Qi Rule for more information):

qi::rule<Iterator, int(double)> r;

In the world of generators, nonterminals are just as useful as in the parser world. Generator nonterminals encapsulate a format de-
scription for a particular data type, and, whenever we need to emit output for this data type, the corresponding nonterminal is invoked
in a similar way as the predefined Spirit.Karma generator primitives. The Spirit.Karma nonterminals are very similar to the Spirit.Qi
nonterminals. Generator nonterminals may accept parameters as well, and we call those inherited attributes too. The main difference
is that they do not expose a synthesized attribute (as parsers do), but they require a special consumed attribute. Usually the consumed

24

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../repository/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

attribute is the value the generator creates its output from. Even if the consumed attribute is not 'returned' from the generator we
chose to use the same function style declaration syntax as used in Spirit.Qi. The example below declares a Spirit.Karma rule con-
suming a double while not expecting any additional inherited attributes.

karma::rule<OutputIterator, double()> r;

The inherited attributes of nonterminal parsers and generators are normally passed to the component during its invocation. These
are the parameters the parser or generator may accept and they can be used to parameterize the component depending on the context
they are invoked from.

Qi - Writing Parsers

Tutorials

Quick Start

Why would you want to use Spirit.Qi?

Spirit.Qi is designed to be a practical parsing tool. The ability to generate a fully-working parser from a formal EBNF specification
inlined in C++ significantly reduces development time. Programmers typically approach parsing using ad hoc hacks with primitive
tools such as scanf. Even regular-expression libraries (such as boost regex) or scanners (such as Boost tokenizer) do not scale well
when we need to write more elaborate parsers. Attempting to write even a moderately-complex parser using these tools leads to code
that is hard to understand and maintain.

One prime objective is to make the tool easy to use. When one thinks of a parser generator, the usual reaction is "it must be big and
complex with a steep learning curve." Not so. Spirit is designed to be fully scalable. The library is structured in layers. This permits
learning on an as-needed basis, after only learning the minimal core and basic concepts.

For development simplicity and ease in deployment, the entire library consists of only header files, with no libraries to link against
or build. Just put the Spirit distribution in your include path, compile and run. Code size? -very tight -essentially comparable to hand
written recursive descent code.

Our tutorials will walk you through the simplest Spirit examples, incrementally building on top of the earlier examples as we expose
more and more features and techniques. We will try to be as gentle as possible with the learning curve. We will present the tutorials
in a cookbook style approach. This style of presentation is based on our BoostCon '07 and BoostCon '08 slides.

Have fun!

Warming up

We'll start by showing examples of parser expressions to give you a feel on how to build parsers from the simplest parser, building
up as we go. When comparing EBNF to Spirit, the expressions may seem awkward at first. Spirit heavily uses operator overloading
to accomplish its magic.

Trivial Example #1 Parsing a number

Create a parser that will parse a floating-point number.

double_

(You've got to admit, that's trivial!) The above code actually generates a Spirit floating point parser (a built-in parser). Spirit has
many pre-defined parsers and consistent naming conventions help you keep from going insane!

Trivial Example #2 Parsing two numbers

Create a parser that will accept a line consisting of two floating-point numbers.

25

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

double_ >> double_

Here you see the familiar floating-point numeric parser double_ used twice, once for each number. What's that >> operator doing
in there? Well, they had to be separated by something, and this was chosen as the "followed by" sequence operator. The above program
creates a parser from two simpler parsers, glueing them together with the sequence operator. The result is a parser that is a compos-
ition of smaller parsers. Whitespace between numbers can implicitly be consumed depending on how the parser is invoked (see below).

Note

When we combine parsers, we end up with a "bigger" parser, but it's still a parser. Parsers can get bigger and bigger,
nesting more and more, but whenever you glue two parsers together, you end up with one bigger parser. This is an
important concept.

Trivial Example #3 Parsing zero or more numbers

Create a parser that will accept zero or more floating-point numbers.

*double_

This is like a regular-expression Kleene Star, though the syntax might look a bit odd for a C++ programmer not used to seeing the
* operator overloaded like this. Actually, if you know regular expressions it may look odd too since the star is before the expression
it modifies. C'est la vie. Blame it on the fact that we must work with the syntax rules of C++.

Any expression that evaluates to a parser may be used with the Kleene Star. Keep in mind that C++ operator precedence rules may
require you to put expressions in parentheses for complex expressions. The Kleene Star is also known as a Kleene Closure, but we
call it the Star in most places.

Trivial Example #4 Parsing a comma-delimited list of numbers

This example will create a parser that accepts a comma-delimited list of numbers.

double_ >> *(char_(',') >> double_)

Notice char_(','). It is a literal character parser that can recognize the comma ','. In this case, the Kleene Star is modifying a
more complex parser, namely, the one generated by the expression:

(char_(',') >> double_)

Note that this is a case where the parentheses are necessary. The Kleene star encloses the complete expression above.

Let's Parse!

We're done with defining the parser. So the next step is now invoking this parser to do its work. There are a couple of ways to do
this. For now, we will use the phrase_parse function. One overload of this function accepts four arguments:

1. An iterator pointing to the start of the input

2. An iterator pointing to one past the end of the input

3. The parser object

4. Another parser called the skip parser

In our example, we wish to skip spaces and tabs. Another parser named space is included in Spirit's repertoire of predefined parsers.
It is a very simple parser that simply recognizes whitespace. We will use space as our skip parser. The skip parser is the one responsible
for skipping characters in between parser elements such as the double_ and char_.

26

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Ok, so now let's parse!

template <typename Iterator>
bool parse_numbers(Iterator first, Iterator last)
{

using qi::double_;
using qi::phrase_parse;
using ascii::space;

bool r = phrase_parse(

 first,

 last,

 double_ >> *(',' >> double_),

 space
);
if (first != last) // fail if we did not get a full match

return false;
return r;

}

start iterator
end iterator
the parser
the skip-parser

The parse function returns true or false depending on the result of the parse. The first iterator is passed by reference. On a suc-
cessful parse, this iterator is repositioned to the rightmost position consumed by the parser. If this becomes equal to last, then we
have a full match. If not, then we have a partial match. A partial match happens when the parser is only able to parse a portion of
the input.

Note that we inlined the parser directly in the call to parse. Upon calling parse, the expression evaluates into a temporary, unnamed
parser which is passed into the parse() function, used, and then destroyed.

Here, we opted to make the parser generic by making it a template, parameterized by the iterator type. By doing so, it can take in
data coming from any STL conforming sequence as long as the iterators conform to a forward iterator.

You can find the full cpp file here: ../../example/qi/num_list1.cpp

Note

char and wchar_t operands

The careful reader may notice that the parser expression has ',' instead of char_(',') as the previous examples
did. This is ok due to C++ syntax rules of conversion. There are >> operators that are overloaded to accept a char
or wchar_t argument on its left or right (but not both). An operator may be overloaded if at least one of its parameters
is a user-defined type. In this case, the double_ is the 2nd argument to operator>>, and so the proper overload
of >> is used, converting ',' into a character literal parser.

The problem with omiting the char_ should be obvious: 'a' >> 'b' is not a spirit parser, it is a numeric expression,
right-shifting the ASCII (or another encoding) value of 'a' by the ASCII value of 'b'. However, both char_('a')
>> 'b' and 'a' >> char_('b') are Spirit sequence parsers for the letter 'a' followed by 'b'. You'll get used
to it, sooner or later.

Finally, take note that we test for a full match (i.e. the parser fully parsed the input) by checking if the first iterator, after parsing, is
equal to the end iterator. You may strike out this part if partial matches are to be allowed.

27

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/qi/num_list1.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Semantic Actions

The example in the previous section was very simplistic. It only recognized data, but did nothing with it. It answered the question:
"Did the input match?". Now, we want to extract information from what was parsed. For example, we would want to store the parsed
number after a successful match. To do this, you will need semantic actions.

Semantic actions may be attached to any point in the grammar specification. These actions are C++ functions or function objects
that are called whenever a part of the parser successfully recognizes a portion of the input. Say you have a parser P, and a C++
function F. You can make the parser call F whenever it matches an input by attaching F:

P[F]

The expression above links F to the parser, P.

The function/function object signature depends on the type of the parser to which it is attached. The parser double_ passes the
parsed number. Thus, if we were to attach a function F to double_, we need F to be declared as:

void F(double n);

There are actually 2 more arguments being passed (the parser context and a reference to a boolean 'hit' parameter). We don't need
these, for now, but we'll see more on these other arguments later. Spirit.Qi allows us to bind a single argument function, like above.
The other arguments are simply ignored.

Examples of Semantic Actions

Presented are various ways to attach semantic actions:

• Using plain function pointer

• Using simple function object

• Using Boost.Bind with a plain function

• Using Boost.Bind with a member function

• Using Boost.Lambda

Given:

28

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/bind/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/bind/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/lambda/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace client
{

namespace qi = boost::spirit::qi;

// A plain function
void print(int const& i)
{

 std::cout << i << std::endl;
}

// A member function
struct writer
{

void print(int const& i) const
{

 std::cout << i << std::endl;
}

};

// A function object
struct print_action
{

void operator()(int const& i, qi::unused_type, qi::unused_type) const
{

 std::cout << i << std::endl;
}

};
}

Take note that with function objects, we need to have an operator() with 3 arguments. Since we don't care about the other two,
we can use unused_type for these. We'll see more of unused_type elsewhere. unused_type is a Spirit supplied support class.

All examples parse inputs of the form:

"{integer}"

An integer inside the curly braces.

The first example shows how to attach a plain function:

parse(first, last, '{' >> int_[&print] >> '}');

What's new? Well int_ is the sibbling of double_. I'm sure you can guess what this parser does.

The next example shows how to attach a simple function object:

parse(first, last, '{' >> int_[print_action()] >> '}');

We can use Boost.Bind to 'bind' member functions:

writer w;
parse(first, last, '{' >> int_[boost::bind(&writer::print, &w, _1)] >> '}');

Likewise, we can also use Boost.Bind to 'bind' plain functions:

29

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/bind/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/bind/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

parse(first, last, '{' >> int_[boost::bind(&print, _1)] >> '}');

Yep, we can also use Boost.Lambda:

parse(first, last, '{' >> int_[std::cout << _1 << '\n'] >> '}');

There are more ways to bind semantic action functions, but the examples above are the most common. Attaching semantic actions
is the first hurdle one has to tackle when getting started with parsing with Spirit. Familiarize yourself with this task and get intimate
with the tools behind it such as Boost.Bind and Boost.Lambda.

The examples above can be found here: ../../example/qi/actions.cpp

Phoenix

Phoenix, a companion library bundled with Spirit, is specifically suited for binding semantic actions. It is like Boost.Lambda on
steroids, with special custom features that make it easy to integrate semantic actions with Spirit. If your requirements go beyond
simple to moderate parsing, it is suggested that you use this library. All the following examples in this tutorial will use Phoenix for
sematic actions.

Important

There are different ways to write semantic actions for Spirit.Qi: using plain functions, Boost.Bind, Boost.Lambda,
or Phoenix. The latter three allow you to use special placeholders to control parameter placement (_1, _2, etc.).
Each of those libraries has it's own implementation of the placeholders, all in different namespaces. You have to
make sure not to mix placeholders with a library they don't belong to and not to use different libraries while writing
a semantic action.

Generally, for Boost.Bind, use ::_1, ::_2, etc. (yes, these placeholders are defined in the global namespace).

For Boost.Lambda use the placeholders defined in the namespace boost::lambda.

For semantic actions written using Phoenix use the placeholders defined in the namespace boost::spirit. Please
note that all existing placeholders for your convenience are also available from the namespace boost::spirit::qi.

Complex - Our first complex parser

Well, not really a complex parser, but a parser that parses complex numbers. This time, we're using Phoenix to do the semantic actions.

Here's a simple parser expression for complex numbers:

'(' >> double_ >> -(',' >> double_) >> ')'
| double_

What's new? Well, we have:

1. Alternates: e.g. a | b. Try a first. If it succeeds, good. If not, try the next alternative, b.

2. Optionals: e.g. -p. Match the parser p zero or one time.

The complex parser presented above reads as:

• One or two real number in parantheses, separated by comma (the second number is optional)

• OR a single real number.

This parser can parse complex numbers of the form:

30

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/lambda/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/bind/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/lambda/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/qi/actions.cpp
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/lambda/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/bind/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/lambda/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/bind/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/lambda/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

(123.45, 987.65)
(123.45)
123.45

Here goes, this time with actions:

namespace client
{

template <typename Iterator>
bool parse_complex(Iterator first, Iterator last, std::complex<double>& c)
{

using boost::spirit::qi::double_;
using boost::spirit::qi::_1;
using boost::spirit::qi::phrase_parse;
using boost::spirit::ascii::space;
using boost::phoenix::ref;

double rN = 0.0;
double iN = 0.0;
bool r = phrase_parse(first, last,

// Begin grammar
(

'(' >> double_[ref(rN) = _1]
>> -(',' >> double_[ref(iN) = _1]) >> ')'

| double_[ref(rN) = _1]
),
// End grammar

 space);

if (!r || first != last) // fail if we did not get a full match
return false;

 c = std::complex<double>(rN, iN);
return r;

}
}

The full cpp file for this example can be found here: ../../example/qi/complex_number.cpp

Note

Those with experience using Phoenix might be confused with the placeholders that we are using (i.e. _1, _2, etc.).
Please be aware that we are not using the same placeholders supplied by Phoenix. Take note that we are pulling in
the placeholders from namespace boost::spirit::qi. These placeholders are specifically tailored for Spirit.

The double_ parser attaches this action:

ref(n) = _1

This assigns the parsed result (actually, the attribute of double_) to n. ref(n) tells Phoenix that n is a mutable reference. _1 is a
Phoenix placeholder for the parsed result attribute.

Sum - adding numbers

Here's a parser that sums a comma-separated list of numbers.

Ok we've glossed over some details in our previous examples. First, our includes:

31

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/qi/complex_number.cpp
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <iostream>
#include <string>

Then some using directives:

namespace qi = boost::spirit::qi;
namespace ascii = boost::spirit::ascii;
namespace phoenix = boost::phoenix;

using qi::double_;
using qi::_1;
using ascii::space;
using phoenix::ref;

DescriptionNamespace

All of phoenixboost::phoenix

All of spiritboost::spirit

All of spirit.qiboost::spirit::qi

ASCII version of char_ and all char related parsers. Other encodings are also provided (e.g. also an
ISO8859.1)

boost::spirit::ascii

Special phoenix placeholders for spiritboost::spirit::arg_names

Note

If you feel uneasy with using whole namespaces, feel free to qualify your code, use namespace aliases, etc. For the
purpose of this tutorial, we will be presenting unqualified names for both Spirit and Phoenix. No worries, we will
always present the full working code, so you won't get lost. In fact, all examples in this tutorial have a corresponding
cpp file that QuickBook (the documentation tool we are using) imports in here as code snippets.

Now the actual parser:

32

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Iterator>
bool adder(Iterator first, Iterator last, double& n)
{

bool r = qi::phrase_parse(first, last,

// Begin grammar
(

 double_[ref(n) = _1] >> *(',' >> double_[ref(n) += _1])
)
,
// End grammar

 space);

if (first != last) // fail if we did not get a full match
return false;

return r;
}

The full cpp file for this example can be found here: ../../example/qi/sum.cpp

This is almost like our original numbers list example. We're incrementally building on top of our examples. This time though, like
in the complex number example, we'll be adding the smarts. There's an accumulator (double& n) that adds the numbers parsed. On
a successful parse, this number is the sum of all the parsed numbers.

The first double_ parser attaches this action:

ref(n) = _1

This assigns the parsed result (actually, the attribute of double_) to n. ref(n) tells Phoenix that n is a mutable reference. _1 is a
Phoenix placeholder for the parsed result attribute.

The second double_ parser attaches this action:

ref(n) += _1

So, subsequent numbers add into n.

That wasn't too bad, was it :-) ?

Number List - stuffing numbers into a std::vector

This sample demontrates a parser for a comma separated list of numbers. The numbers are inserted in a vector using phoenix.

33

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/qi/sum.cpp
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Iterator>
bool parse_numbers(Iterator first, Iterator last, std::vector<double>& v)
{

using qi::double_;
using qi::phrase_parse;
using qi::_1;
using ascii::space;
using phoenix::push_back;
using phoenix::ref;

bool r = phrase_parse(first, last,

// Begin grammar
(

 double_[push_back(ref(v), _1)]
>> *(',' >> double_[push_back(ref(v), _1)])

)
,
// End grammar

 space);

if (first != last) // fail if we did not get a full match
return false;

return r;
}

The full cpp file for this example can be found here: ../../example/qi/num_list2.cpp

This, again, is the same parser as before. This time, instead of summing up the numbers, we stuff them in a std::vector. push_back
is supplied by Phoenix. The expression:

push_back(ref(v), _1)

appends the parsed number. Like before, _1 is a Phoenix placeholder for the parsed result attribute. Also, like before, ref(v) tells
Phoenix that v, the std::vector, is a mutable reference.

Number List Redux - list syntax

So far, we've been using the syntax:

double_ >> *(',' >> double_)

to parse a comma-delimited list of numbers. Such lists are common in parsing and Spirit provides a simpler shortcut for them. The
expression above can be simplified to:

double_ % ','

read as: a list of doubles separated by ','.

This sample, again a variation of our previous example, demonstrates just that:

34

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/qi/num_list2.cpp
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Iterator>
bool parse_numbers(Iterator first, Iterator last, std::vector<double>& v)
{

using qi::double_;
using qi::phrase_parse;
using qi::_1;
using ascii::space;
using phoenix::push_back;
using phoenix::ref;

bool r = phrase_parse(first, last,

// Begin grammar
(

 double_[push_back(ref(v), _1)] % ','
)
,
// End grammar

 space);

if (first != last) // fail if we did not get a full match
return false;

return r;
}

The full cpp file for this example can be found here: ../../example/qi/num_list3.cpp

Number List Attribute - one more, with style

You've seen that the double_ parser has a double attribute. All parsers have an attribute, even complex parsers, those that are
composed from primitives using operators, like the list parser, also have an attribute. It so happens that the the attribute of a list
parser:

p % d

is a std::vector of the attribute of p. So, for our parser:

double_ % ','

we'll have an attribute of:

std::vector<double>

So, what does this give us? Well, we can simply pass in a std::vector<double> to our number list parser and it will happily
churn out our result in our vector. For that to happen, we'll use a variation of the phrase_parse with an additional argument: the
parser's attribute. With the following arguments passed to phrase_parse

1. An iterator pointing to the start of the input

2. An iterator pointing to one past the end of the input

3. The parser object

4. Another parser called the skip parser

5. The parser's attribute

our parser now is further simplified to:

35

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/qi/num_list3.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Iterator>
bool parse_numbers(Iterator first, Iterator last, std::vector<double>& v)
{

using qi::double_;
using qi::phrase_parse;
using qi::_1;
using ascii::space;

bool r = phrase_parse(first, last,

// Begin grammar
(

 double_ % ','
)
,
// End grammar

 space, v);

if (first != last) // fail if we did not get a full match
return false;

return r;
}

The full cpp file for this example can be found here: ../../example/qi/num_list4.cpp

Hey, no more actions!!! Now we're entering the realm of attribute grammars. Cool eh?

Roman Numerals

This example demonstrates:

• symbol table

• rule

• grammar

Symbol Table

The symbol table holds a dictionary of symbols where each symbol is a sequence of characters (a char, wchar_t, int, enumeration
etc.) . The template class, parameterized by the character type, can work efficiently with 8, 16, 32 and even 64 bit characters. Mutable
data of type T is associated with each symbol.

Traditionally, symbol table management is maintained seperately outside the BNF grammar through semantic actions. Contrary to
standard practice, the Spirit symbol table class symbols is a parser, an object of which may be used anywhere in the EBNF grammar
specification. It is an example of a dynamic parser. A dynamic parser is characterized by its ability to modify its behavior at run
time. Initially, an empty symbols object matches nothing. At any time, symbols may be added or removed, thus, dynamically altering
its behavior.

Each entry in a symbol table has an associated mutable data slot. In this regard, one can view the symbol table as an associative
container (or map) of key-value pairs where the keys are strings.

The symbols class expects two template parameters. The first parameter specifies the character type of the symbols. The second
specifies the data type associated with each symbol: its attribute.

Here's a parser for roman hundreds (100..900) using the symbol table. Keep in mind that the data associated with each slot is the
parser's attribute (which is passed to attached semantic actions).

36

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/qi/num_list4.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct hundreds_ : qi::symbols<char, unsigned>
{
 hundreds_()

{
 add

("C" , 100)
("CC" , 200)
("CCC" , 300)
("CD" , 400)
("D" , 500)
("DC" , 600)
("DCC" , 700)
("DCCC" , 800)
("CM" , 900)

;
}

} hundreds;

Here's a parser for roman tens (10..90):

struct tens_ : qi::symbols<char, unsigned>
{
 tens_()

{
 add

("X" , 10)
("XX" , 20)
("XXX" , 30)
("XL" , 40)
("L" , 50)
("LX" , 60)
("LXX" , 70)
("LXXX" , 80)
("XC" , 90)

;
}

} tens;

and, finally, for ones (1..9):

37

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct ones_ : qi::symbols<char, unsigned>
{
 ones_()

{
 add

("I" , 1)
("II" , 2)
("III" , 3)
("IV" , 4)
("V" , 5)
("VI" , 6)
("VII" , 7)
("VIII" , 8)
("IX" , 9)

;
}

} ones;

Now we can use hundreds, tens and ones anywhere in our parser expressions. They are all parsers.

Rules

Up until now, we've been inlining our parser expressions, passing them directly to the phrase_parse function. The expression
evaluates into a temporary, unnamed parser which is passed into the phrase_parse function, used, and then destroyed. This is fine
for small parsers. When the expressions get complicated, you'd want to break the expressions into smaller easier to understand pieces,
name them, and refer to them from other parser expressions by name.

A parser expression can be assigned to, what is called, a "rule". There are various ways to declare rules. The simplest form is:

rule<Iterator> r;

At the very least, the rule needs to know the iterator type it will be working on. This rule cannot be used with phrase_parse. It
can only be used with the parse function -- a version that does not do white space skipping (does not have the skipper argument).
If you want to have it skip white spaces, you need to pass in the type skip parser, as in the next form:

rule<Iterator, Skipper> r;

Example:

rule<std::string::iterator, space_type> r;

This type of rule can be used for both phrase_parse and parse.

For our next example, there's one more rule form you should know about:

rule<Iterator, Signature> r;

or

38

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rule<Iterator, Signature, Skipper> r;

Tip

All rule template arguments after Iterator can be supplied in any order.

The Signature specifies the attributes of the rule. You've seen that our parsers can have an attribute. Recall that the double_ parser
has an attribute of double. To be precise, these are synthesized attributes. The parser "synthesizes" the attribute value. Think of
them as function return values.

There's another type of attribute called "inherited" attribute. We won't need them for now, but it's good that you be aware of such
attributes. You can think of them as function arguments. And, rightly so, the rule signature is a function signature of the form:

result(argN, argN,..., argN)

After having declared a rule, you can now assign any parser expression to it. Example:

r = double_ >> *(',' >> double_);

Grammars

A grammar encapsulates one or more rules. It has the same template parameters as the rule. You declare a grammar by:

1. deriving a struct (or class) from the grammar class template

2. declare one or more rules as member variables

3. initialize the base grammar class by giving it the start rule (its the first rule that gets called when the grammar starts parsing)

4. initialize your rules in your constructor

The roman numeral grammar is a very nice and simple example of a grammar:

39

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Iterator>
struct roman : qi::grammar<Iterator, unsigned()>
{
 roman() : roman::base_type(start)

{
using qi::eps;
using qi::lit;
using qi::_val;
using qi::_1;
using ascii::char_;

 start = eps [_val = 0] >>
(

+lit('M') [_val += 1000]
|| hundreds [_val += _1]
|| tens [_val += _1]
|| ones [_val += _1]

)
;

}

 qi::rule<Iterator, unsigned()> start;
};

Things to take notice of:

• The grammar and start rule signature is unsigned(). It has a synthesized attribute (return value) of type unsigned with no in-
herited attributes (arguments).

• We did not specify a skip-parser. We don't want to skip in between the numerals.

• roman::base_type is a typedef for grammar<Iterator, unsigned()>. If roman was not a template, you can simply write:
base_type(start)

• But it's best to make your grammar templates, so that they can be reused for different iterator types.

• _val is another Phoenix placeholder representing the rule's synthesized attribute.

• eps is a special spirit parser that consumes no input but is always successful. We use it to initialize _val, the rule's synthesized
attribute, to zero before anything else. The actual parser starts at +char_('M'), parsing roman thousands. Using eps this way is
good for doing pre and post initializations.

• The expression a || b reads: match a or b and in sequence. That is, if both a and b match, it must be in sequence; this is equivalent
to a >> -b | b, but more efficient.

40

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Let's Parse!

bool r = parse(iter, end, roman_parser, result);

if (r && iter == end)
{
 std::cout << "-------------------------\n";
 std::cout << "Parsing succeeded\n";
 std::cout << "result = " << result << std::endl;
 std::cout << "-------------------------\n";
}
else
{
 std::string rest(iter, end);
 std::cout << "-------------------------\n";
 std::cout << "Parsing failed\n";
 std::cout << "stopped at: \": " << rest << "\"\n";
 std::cout << "-------------------------\n";
}

roman_parser is an object of type roman, our roman numeral parser. This time around, we are using the no-skipping version of
the parse functions. We do not want to skip any spaces! We are also passing in an attribute, unsigned result, which will receive
the parsed value.

The full cpp file for this example can be found here: ../../example/qi/roman.cpp

Employee - Parsing into structs

It's a common question in the Spirit General List: How do I parse and place the results into a C++ struct? Of course, at this point,
you already know various ways to do it, using semantic actions. There are many ways to skin a cat. Spirit2, being fully attributed,
makes it even easier. The next example demonstrates some features of Spirit2 that make this easy. In the process, you'll learn about:

• More about attributes

• Auto rules

• Some more built-in parsers

• Directives

First, let's create a struct representing an employee:

struct employee
{

int age;
 std::string surname;
 std::string forename;

double salary;
};

Then, we need to tell Boost.Fusion about our employee struct to make it a first-class fusion citizen that the grammar can utilize. If
you don't know fusion yet, it is a Boost library for working with heterogenous collections of data, commonly referred to as tuples.
Spirit uses fusion extensively as part of its infrastructure.

In fusion's view, a struct is just a form of a tuple. You can adapt any struct to be a fully conforming fusion tuple:

41

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/qi/roman.cpp
http://www.nabble.com/The-Spirit-Parser-Library-f3430.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/fusion/doc/html/index.html
http://www.boost.org/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

BOOST_FUSION_ADAPT_STRUCT(
 client::employee,

(int, age)
(std::string, surname)
(std::string, forename)
(double, salary)

)

Now we'll write a parser for our employee. Inputs will be of the form:

employee{ age, "surname", "forename", salary }

Here goes:

template <typename Iterator>
struct employee_parser : qi::grammar<Iterator, employee(), ascii::space_type>
{
 employee_parser() : employee_parser::base_type(start)

{
using qi::int_;
using qi::lit;
using qi::double_;
using qi::lexeme;
using ascii::char_;

 quoted_string %= lexeme['"' >> +(char_ - '"') >> '"'];

 start %=
 lit("employee")

>> '{'
>> int_ >> ','
>> quoted_string >> ','
>> quoted_string >> ','
>> double_
>> '}'
;

}

 qi::rule<Iterator, std::string(), ascii::space_type> quoted_string;
 qi::rule<Iterator, employee(), ascii::space_type> start;
};

The full cpp file for this example can be found here: ../../example/qi/employee.cpp

Let's walk through this one step at a time (not necessarily from top to bottom).

template <typename Iterator>
struct employee_parser : grammar<Iterator, employee(), space_type>

employee_parser is a grammar. Like before, we make it a template so that we can reuse it for different iterator types. The grammar's
signature is:

employee()

meaning, the parser generates employee structs. employee_parser skips white spaces using space_type as its skip parser.

42

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/qi/employee.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

employee_parser() : employee_parser::base_type(start)

Initializes the base class.

rule<Iterator, std::string(), space_type> quoted_string;
rule<Iterator, employee(), space_type> start;

Declares two rules: quoted_string and start. start has the same template parameters as the grammar itself. quoted_string
has a std::string attribute.

Lexeme

lexeme['"' >> +(char_ - '"') >> '"'];

lexeme inhibits space skipping from the open brace to the closing brace. The expression parses quoted strings.

+(char_ - '"')

parses one or more chars, except the double quote. It stops when it sees a double quote.

Difference

The expression:

a - b

parses a but not b. Its attribute is just A, the attribute of a. b's attribute is ignored. Hence, the attribute of:

char_ - '"'

is just char.

Plus

+a

is similar to kleene star. Rather than match everything, +a matches one or more. Like it's related function, the kleene star, its attribute
is a std::vector<A> where A is the attribute of a. So, putting all these together, the attribute of

+(char_ - '"')

is then:

std::vector<char>

Sequence Attribute

Now what's the attribute of

'"' >> +(char_ - '"') >> '"'

?

43

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Well, typically, the attribute of:

a >> b >> c

is:

fusion::vector<A, B, C>

where A is the attribute of a, B is the attribute of b and C is the attribute of c. What is fusion::vector? - a tuple.

Note

If you don't know what I am talking about, see: Fusion Vector. It might be a good idea to have a look into
Boost.Fusion at this point. You'll definitely see more of it in the coming pages.

Attribute Collapsing

Some parsers, especially those very little literal parsers you see, like '"', do not have attributes.

Nodes without attributes are disregarded. In a sequence, like above, all nodes with no attributes are filtered out of the fusion::vector.
So, since '"' has no attribute, and +(char_ - '"') has a std::vector<char> attribute, the whole expression's attribute should
have been:

fusion::vector<std::vector<char> >

But wait, there's one more collapsing rule: If after the attribute is a single element fusion::vector, The element is stripped naked
from its container. So, to make a long story short, the attribute of the expression:

'"' >> +(char_ - '"') >> '"'

is:

std::vector<char>

Auto Rules

It is typical to see rules like:

r = p[_val = _1];

If you have a rule definition like above where the attribute of the RHS (right hand side) of the rule is compatibe with the attribute
of the LHS (left hand side), then you can rewrite it as:

r %= p;

The attribute of p automatically uses the attribute of r.

So, going back to our quoted_string rule:

quoted_string %= lexeme['"' >> +(char_ - '"') >> '"'];

is a simplified version of:

44

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://tinyurl.com/6xun4j
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/fusion/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

quoted_string = lexeme['"' >> +(char_ - '"') >> '"'][val_ = _1];

The attribute of the quoted_string rule: std::string is compatible with the attribute of the RHS: std::vector<char>. The
RHS extracts the parsed attribute directly into the rule's attribute, in-situ.

Note

r %= p and r = p are equivalent if there are no semantic actions associated with p.

Finally

We're down to one rule, the start rule:

start %=
 lit("employee")

>> '{'
>> int_ >> ','
>> quoted_string >> ','
>> quoted_string >> ','
>> double_
>> '}'
;

Applying our collapsing rules above, the RHS has an attribute of:

fusion::vector<int, std::string, std::string, double>

These nodes do not have an attribute:

• lit("employee")

• '{'

• ','

• '}'

Note

In case you are wondering, lit("employee") is the same as "employee". We had to wrap it inside lit because
immediately after it is >> '{'. You can't right-shift a char[] and a char - you know, C++ syntax rules.

Recall that the attribute of start is the employee struct:

struct employee
{

int age;
 std::string surname;
 std::string forename;

double salary;
};

Now everything is clear, right? The struct employee IS compatible with fusion::vector<int, std::string,

std::string, double>. So, the RHS of start uses start's attribute (a struct employee) in-situ when it does its work.

45

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Mini XML - ASTs!

Stop and think about it... We've come very close to generating an AST (abstract syntax tree) in our last example. We parsed a single
structure and generated an in-memory representation of it in the form of a struct: the struct employee. If we changed the imple-
mentation to parse one or more employees, the result would be a std::vector<employee>. We can go on and add more hierarchy:
teams, departments, corporations. Then we'll have an AST representation of it all.

In this example (actually two examples), we'll now explore how to create ASTs. We will parse a minimalistic XML like language
and compile the results into our data structures in the form of a tree.

Along the way, we'll see new features:

• Inherited attributes

• Variant attributes

• Local Variables

• Not Predicate

• Lazy Lit

The full cpp files for these examples can be found here: ../../example/qi/mini_xml1.cpp and here: ../../example/qi/mini_xml2.cpp

There are a couple of sample toy-xml files in: ../../example/qi/mini_xml_samples for testing purposes. "4.toyxml" has an error in it.

First Cut

Without further delay, here's the first version of the XML grammar:

46

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/qi/mini_xml1.cpp
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/qi/mini_xml2.cpp
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/qi/mini_xml_samples
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Iterator>
struct mini_xml_grammar : qi::grammar<Iterator, mini_xml(), ascii::space_type>
{
 mini_xml_grammar() : mini_xml_grammar::base_type(xml)

{
using qi::lit;
using qi::lexeme;
using ascii::char_;
using ascii::string;
using namespace qi::labels;

using phoenix::at_c;
using phoenix::push_back;

 text = lexeme[+(char_ - '<') [_val += _1]];
 node = (xml | text) [_val = _1];

 start_tag =
'<'

>> !lit('/')
>> lexeme[+(char_ - '>') [_val += _1]]
>> '>'

;

 end_tag =
"</"

>> string(_r1)
>> '>'

;

 xml =
 start_tag [at_c<0>(_val) = _1]

>> *node [push_back(at_c<1>(_val), _1)]
>> end_tag(at_c<0>(_val))

;
}

 qi::rule<Iterator, mini_xml(), ascii::space_type> xml;
 qi::rule<Iterator, mini_xml_node(), ascii::space_type> node;
 qi::rule<Iterator, std::string(), ascii::space_type> text;
 qi::rule<Iterator, std::string(), ascii::space_type> start_tag;
 qi::rule<Iterator, void(std::string), ascii::space_type> end_tag;
};

Going bottom up, let's examine the text rule:

rule<Iterator, std::string(), space_type> text;

and its definition:

text = lexeme[+(char_ - '<') [_val += _1]];

The semantic action collects the chars and appends them (via +=) to the std::string attribute of the rule (represented by the
placeholder _val).

Alternates

rule<Iterator, mini_xml_node(), space_type> node;

and its definition:

47

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

node = (xml | text) [_val = _1];

We'll see what a mini_xml_node structure is later. Looking at the rule definition, we see some alternation going on here. An xml
node is either an xml OR text. Hmmm... hold on to that thought...

rule<Iterator, std::string(), space_type> start_tag;

Again, with an attribute of std::string. Then, it's definition:

start_tag =
'<'

>> !char_('/')
>> lexeme[+(char_ - '>') [_val += _1]]
>> '>'

;

Not Predicate

start_tag is similar to the text rule apart from the added '<' and '>'. But wait, to make sure that the start_tag does not parse
end_tags too, we add: !char_('/'). This is a "Not Predicate":

!p

It will try the parser, p. If it is successful, fail, otherwise, pass. In other words, it negates the result of p. Like the eps, it does not
consume any input though. It will always rewind the iterator position to where it was upon entry. So, the expression:

!char_('/')

basically says: we should not have a '/' at this point.

Inherited Attribute

The end_tag:

rule<Iterator, void(std::string), space_type> end_tag;

Ohh! Now we see an inherited attribute there: std::string. The end_tag does not have a synthesized attribute. Let's see its
definition:

end_tag =
"</"

>> lit(_r1)
>> '>'

;

_r1 is yet another Phoenix placeholder for the first inherited attribute (we have only one, use _r2, _r3, etc. if you have more).

A Lazy Lit

Check out how we used lit here, this time, not with a literal string, but with the value of the first inherited attribute, which is specified
as std::string in our rule declaration.

Finally, our xml rule:

48

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rule<Iterator, mini_xml(), space_type> xml;

mini_xml is our attribute here. We'll see later what it is. Let's see its definition:

xml =
 start_tag [at_c<0>(_val) = _1]

>> *node [push_back(at_c<1>(_val), _1)]
>> end_tag(at_c<0>(_val))

;

Those who know Boost.Fusion now will notice at_c<0> and at_c<1>. This gives us a hint that mini_xml is a sort of a tuple - a
fusion sequence. at_c<N> here is a lazy version of the tuple accessors, provided by Phoenix.

How it all works

So, what's happening?

1. Upon parsing start_tag, the parsed start-tag string is placed in at_c<0>(_val).

2. Then we parse zero or more nodes. At each step, we push_back the result into at_c<1>(_val).

3. Finally, we parse the end_tag giving it an inherited attribute: at_c<0>(_val). This is the string we obtained from the start_tag.
Investigate end_tag above. It will fail to parse if it gets something different from what we got from the start_tag. This ensures
that our tags are balanced.

To give the last item some more light, what happens is this:

end_tag(at_c<0>(_val))

calls:

end_tag =
"</"

>> lit(_r1)
>> '>'

;

passing in at_c<0>(_val), the string from start tag. This is referred to in the end_tag body as _r1.

The Structures

Let's see our structures. It will definitely be hierarchical: xml is hierarchical. It will also be recursive: xml is recursive.

49

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/fusion/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct mini_xml;

typedef
 boost::variant<
 boost::recursive_wrapper<mini_xml>

, std::string
>

mini_xml_node;

struct mini_xml
{
 std::string name; // tag name
 std::vector<mini_xml_node> children; // children
};

Of Alternates and Variants

So that's what a mini_xml_node looks like. We had a hint that it is either a string or a mini_xml. For this, we use Boost.Variant.
boost::recursive_wrapper wraps mini_xml, making it a recursive data structure.

Yep, you got that right: the attribute of an alternate:

a | b

is a

boost::variant<A, B>

where A is the attribute of a and B is the attribute of b.

Adapting structs again

mini_xml is no brainier. It is a plain ol' struct. But as we've seen in our employee example, we can adapt that to be a Boost.Fusion
sequence:

BOOST_FUSION_ADAPT_STRUCT(
 client::mini_xml,

(std::string, name)
(std::vector<client::mini_xml_node>, children)

)

One More Take

Here's another version. The AST structure remains the same, but this time, you'll see that we make use of auto-rules making the
grammar semantic-action-less. Here it is:

50

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/html/variant.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/fusion/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Iterator>
struct mini_xml_grammar
: qi::grammar<Iterator, mini_xml(), qi::locals<std::string>, ascii::space_type>

{
 mini_xml_grammar()

: mini_xml_grammar::base_type(xml)
{

using qi::lit;
using qi::lexeme;
using ascii::char_;
using ascii::string;
using namespace qi::labels;

 text %= lexeme[+(char_ - '<')];
 node %= xml | text;

 start_tag %=
'<'

>> !lit('/')
>> lexeme[+(char_ - '>')]
>> '>'

;

 end_tag =
"</"

>> string(_r1)
>> '>'

;

 xml %=
 start_tag[_a = _1]

>> *node
>> end_tag(_a)

;
}

 qi::rule<Iterator, mini_xml(), qi::locals<std::string>, ascii::space_type> xml;
 qi::rule<Iterator, mini_xml_node(), ascii::space_type> node;
 qi::rule<Iterator, std::string(), ascii::space_type> text;
 qi::rule<Iterator, std::string(), ascii::space_type> start_tag;
 qi::rule<Iterator, void(std::string), ascii::space_type> end_tag;
};

This one shouldn't be any more difficult to understand after going through the first xml parser example. The rules are almost the
same, except that, we got rid of semantic actions and used auto-rules (see the employee example if you missed that). There is some
new stuff though. It's all in the xml rule:

Local Variables

rule<Iterator, mini_xml(), locals<std::string>, space_type> xml;

Wow, we have four template parameters now. What's that locals guy doing there? Well, it declares that the rule xml will have one
local variable: a string. Let's see how this is used in action:

51

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

xml %=
 start_tag[_a = _1]

>> *node
>> end_tag(_a)

;

1. Upon parsing start_tag, the parsed start-tag string is placed in the local variable specified by (yet another) Phoenix placeholder:
_a. We have only one local variable. If we had more, these are designated by _b.._z.

2. Then we parse zero or more nodes.

3. Finally, we parse the end_tag giving it an inherited attribute: _a, our local variable.

There are no actions involved in stuffing data into our xml attribute. It's all taken care of thanks to the auto-rule.

Mini XML - Error Handling

A parser will not be complete without error handling. Spirit2 provides some facilities to make it easy to adapt a grammar for error
handling. We'll wrap up the Qi tutorial with another version of the mini xml parser, this time, with error handling.

The full cpp file for this example can be found here: ../../example/qi/mini_xml3.cpp

Here's the grammar:

52

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/qi/mini_xml3.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Iterator>
struct mini_xml_grammar
: qi::grammar<Iterator, mini_xml(), qi::locals<std::string>, ascii::space_type>

{
 mini_xml_grammar()

: mini_xml_grammar::base_type(xml, "xml")
{

using qi::lit;
using qi::lexeme;
using qi::on_error;
using qi::fail;
using ascii::char_;
using ascii::string;
using namespace qi::labels;

using phoenix::construct;
using phoenix::val;

 text %= lexeme[+(char_ - '<')];
 node %= xml | text;

 start_tag %=
'<'

>> !lit('/')
> lexeme[+(char_ - '>')]
> '>'

;

 end_tag =
"</"

> string(_r1)
> '>'

;

 xml %=
 start_tag[_a = _1]

> *node
> end_tag(_a)

;

 xml.name("xml");
 node.name("node");
 text.name("text");
 start_tag.name("start_tag");
 end_tag.name("end_tag");

 on_error<fail>
(

 xml
, std::cout

<< val("Error! Expecting ")
<< _4 // what failed?
<< val(" here: \"")
<< construct<std::string>(_3, _2) // iterators to error-pos, end
<< val("\"")
<< std::endl

);
}

53

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 qi::rule<Iterator, mini_xml(), qi::locals<std::string>, ascii::space_type> xml;
 qi::rule<Iterator, mini_xml_node(), ascii::space_type> node;
 qi::rule<Iterator, std::string(), ascii::space_type> text;
 qi::rule<Iterator, std::string(), ascii::space_type> start_tag;
 qi::rule<Iterator, void(std::string), ascii::space_type> end_tag;
};

What's new?

Readable Names

First, when we call the base class, we give the grammar a name:

: mini_xml_grammar::base_type(xml, "xml")

Then, we name all our rules:

xml.name("xml");
node.name("node");
text.name("text");
start_tag.name("start_tag");
end_tag.name("end_tag");

On Error

on_error declares our error handler:

on_error<Action>(rule, handler)

This will specify what we will do when we get an error. We will print out an error message using phoenix:

on_error<fail>
(
 xml
, std::cout

<< val("Error! Expecting ")
<< _4 // what failed?
<< val(" here: \"")
<< construct<std::string>(_3, _2) // iterators to error-pos, end
<< val("\"")
<< std::endl

);

we choose to fail in our example for the Action: Quit and fail. Return a no_match (false). It can be one of:

DescriptionAction

Quit and fail. Return a no_match.fail

Attempt error recovery, possibly moving the iterator position.retry

Force success, moving the iterator position appropriately.accept

Rethrows the error.rethrow

rule is the rule we attach the handler to. In our case, we are attaching to the xml rule.

54

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

handler is the actual error handling function. It expects 4 arguments:

DescriptionArg

The position of the iterator when the rule with the handler was entered.first

The end of input.last

The actual position of the iterator where the error occurred.error-pos

What failed: a string decribing the failure.what

Expectation Points

You might not have noticed it, but some of our expressions changed from using the >> to >. Look, for example:

end_tag =
"</"

> lit(_r1)
> '>'

;

What is it? It's the expectation operator. You will have some "deterministic points" in the grammar. Those are the places where
backtracking cannot occur. For our example above, when you get a "</", you definitely must see a valid end-tag label next. It
should be the one you got from the start-tag. After that, you definitely must have a '>' next. Otherwise, there is no point in proceeding
forward and trying other branches, regardless where they are. The input is definitely erroneous. When this happens, an expecta-
tion_failure exception is thrown. Somewhere outward, the error handler will catch the exception.

Try building the parser: ../../example/qi/mini_xml3.cpp. You can find some examples in: ../../example/qi/mini_xml_samples for
testing purposes. "4.toyxml" has an error in it:

<foo><bar></foo></bar>

Running the example with this gives you:

Error! Expecting "bar" here: "foo></bar>"
Error! Expecting end_tag here: "<bar></foo></bar>"

Parsing failed

Quick Reference
This quick reference section is provided for convenience. You can use this section as a sort of a "cheat-sheet" on the most commonly
used Qi components. It is not intended to be complete, but should give you an easy way to recall a particular component without
having to dig up on pages and pages of reference doumentation.

Common Notation

Notation

P Parser type

p, a, b, c Parser objects

A, B, C Attribute types of parsers a, b and c

55

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/qi/mini_xml3.cpp
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/qi/mini_xml_samples
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

I The iterator type used for parsing

Unused An unused_type

Context The enclosing rule's Context type

attrib An attribute value

Attrib An attribute type

b A boolean expression

fp A (lazy parser) function with signature P(Unused, Context)

fa A (semantic action) function with signature void(Attrib, Context, bool&). The third
parameter is a boolean flag that can be set to false to force the parse to fail. Both Context
and the boolean flag are optional.

first An iterator pointing to the start of input

last An iterator pointing to the end of input

Ch Character-class specific character type (See Character Class Types)

ch Character-class specific character (See Character Class Types)

ch2 Character-class specific character (See Character Class Types)

charset Character-set specifier string (example: "a-z0-9")

str Character-class specific string (See Character Class Types)

Str Attribute of str: std::basic_string<T> where T is the underlying character type of str

tuple<> Used as a placeholder for a fusion sequence

vector<> Used as a placeholder for an STL container

variant<> Used as a placeholder for a boost::variant

optional<> Used as a placeholder for a boost::optional

56

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Qi Parsers

Character Parsers

DescriptionAttributeExpression

Matches chUnusedch

Matches chUnusedlit(ch)

Matches any characterChchar_

Matches chChchar_(ch)

Matches a single char string literal, cChchar_("c")

Matches a range of chars from ch to ch2 (inclusive)Chchar_(ch, ch2)

Matches a character set charsetChchar_(charset)

Matches a character based on the equivalent of std::isalnum in the current character setChalnum

Matches a character based on the equivalent of std::isalpha in the current character setChalpha

Matches a character based on the equivalent of std::isblank in the current character setChblank

Matches a character based on the equivalent of std::iscntrl in the current character setChcntrl

Matches a character based on the equivalent of std::isdigit in the current character setChdigit

Matches a character based on the equivalent of std::isgraph in the current character setChgraph

Matches a character based on the equivalent of std::isprint in the current character setChprint

Matches a character based on the equivalent of std::ispunct in the current character setChpunct

Matches a character based on the equivalent of std::isspace in the current character setChspace

Matches a character based on the equivalent of std::isxdigit in the current character setChxdigit

Matches a character based on the equivalent of std::islower in the current character setChlower

Matches a character based on the equivalent of std::isupper in the current character setChupper

57

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Numeric Parsers

DescriptionAttributeExpression

Parse a floating point number into a floatfloatfloat_

Parse a floating point number into a doubledoubledouble_

Parse a floating point number into a long doublelong doublelong_double

Parse a binary integer into an unsignedunsignedbin

Parse an octal integer into an unsignedunsignedoct

Parse a hexadecimal integer into an unsignedunsignedhex

Parse an unsigned short integerunsigned shortushort_

Parse an unsigned long integerunsigned longulong_

Parse an unsigned intunsigned intuint_

Parse an unsigned long longunsigned long longulong_long

Parse a short integershortshort_

Parse a long integerlonglong_

Parse an intintint_

Parse a long longlong longlong_long

String Parsers

DescriptionAttributeExpression

Matches strUnusedstr

Matches strUnusedlit(str)

Matches strStrstring(str)

Declare a symbol table, sym. Ch is the underlying char type of the symbol table keys. T
is the data type associated with each key.

N/Asymbols<Ch, T>

Add symbols into a symbol table, sym. val1 and val2 are optional data of type T, the
data type associated with each key.

N/A
sym.add

(str1, val1)
(str2, val2)

 ↵
 /*...more...*/
;

Matches entries in the symbol table, sym. If successful, returns the data associated with
the key

Tsym

58

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Auxiliary Parsers

DescriptionAttributeExpression

Matches the end of line (\r or \n or \r\n)Unusedeol

Matches the end of input (first == last)Unusedeoi

Match an empty stringUnusedeps

If b is true, match an empty stringUnusedeps(b)

Invoke fp at parse time, returning a parser p which is then called
to parse.

Attribute of P where P is the return type
of fp

lazy(fp)

Equivalent to lazy(fp)see lazy(fp) abovefp

Doesn't consume/parse any input, but exposes the argument attrib
as its attribute.

Attribattr(attrib)

Binary Parsers

DescriptionAttributeExpression

Matches an 8 bit binary8 bits native endianbyte_

Matches a 16 bit binary16 bits native endianword

Matches a 16 bit binary16 bits big endianbig_word

Matches a 16 bit binary16 bits little endianlittle_word

Matches a 32 bit binary32 bits native endiandword

Matches a 32 bit binary32 bits big endianbig_dword

Matches a 32 bit binary32 bits little endianlittle_dword

Matches a 64 bit binary64 bits native endianqword

Matches a 64 bit binary64 bits big endianbig_qword

Matches a 64 bit binary64 bits little endianlittle_qword

Auto Parsers

See here for more information about Auto Parsers.

DescriptionAttributeExpression

Parse input using a parser created from the supplied attribute type using the create_parserAPI
function.

hold_anyauto_

59

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parser Directives

DescriptionAttributeExpression

Disable skip parsing for aAlexeme[a]

Inhibits case-sensitivity for aAno_case[a]

Ignores the attribute type of aUnusedomit[a]

Return if the embedded parser a matched its inputboolmatches[a]

Presents the transduction of a as an iterator rangeboost::iterator_range<I>raw[a]

Repeat a zero or more timesvector<A>repeat[a]

Repeat a N timesvector<A>repeat(N)[a]

Repeat a N to M timesvector<A>repeat(N, M)[a]

Repeat a N or more timesvector<A>repeat(N, inf)[a]

Re-establish the skipper that got inhibited by lexemeAskip[a]

Use p as a skipper for parsing aAskip(p)[a]

Parser Operators

DescriptionAttributeExpression

Not predicate. If the predicate a matches, fail. Otherwise, return a zero
length match.

Unused!a

And predicate. If the predicate a matches, return a zero length match.
Otherwise, fail.

Unused&a

Optional. Parse a zero or one timeoptional<A>-a

Kleene. Parse a zero or more timesvector<A>*a

Plus. Parse a one or more timesvector<A>+a

Alternative. Parse a or bvariant<A, B>a | b

Sequence. Parse a followed by btuple<A, B>a >> b

Expect. Parse a followed by b. b is expected to match when a matches,
otherwise, an expectation_failure is thrown.

tuple<A, B>a > b

Difference. Parse a but not bAa - b

Sequential Or. Parse a or b or a followed by btuple<A, B>a || b

List. Parse a delimited b one or more timesvector<A>a % b

Permutation. Parse a or b or a followed by b or b followed by a.tuple< optional<A>, option-

al >

a ^ b

60

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/range/doc/utility_class.html#iter_range
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parser Semantic Actions

DescriptionAttributeExpression

Call semantic action, fa if p succeeds.Attribute of pp[fa]

Compound Attribute Rules

Notation

The notation we will use will be of the form:

a: A, b: B, ... --> composite-expression: composite-attribute

a, b, etc. are the operands. A, B, etc. are the operand's attribute types. composite-expression is the expression involving the op-
erands and composite-attribute is the resulting attribute type of the composite expression.

For instance:

a: A, b: B --> (a >> b): tuple<A, B>

reads as: given, a and b are parsers, and A is the type of the attribute of a, and B is the type of the attribute of b, then the type of the
attribute of a >> b will be tuple<A, B>.

Important

In the attribute tables, we will use vector<A> and tuple<A, B...> as placeholders only. The notation of vec-
tor<A> stands for any STL container holding elements of type A and the notation tuple<A, B...> stands for any
Boost.Fusion sequence holding A, B, ... etc. elements. Finally, Unused stands for unused_type.

61

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.sgi.com/tech/stl/
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/fusion/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Compound Parser Attribute Types

62

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

AttributeExpression

a: A, b: B --> (a >> b): tuple<A, B>
a: A, b: Unused --> (a >> b): A
a: Unused, b: B --> (a >> b): B
a: Unused, b: Unused --> (a >> b): Unused

a: A, b: A --> (a >> b): vector<A>
a: vector<A>, b: A --> (a >> b): vector<A>
a: A, b: vector<A> --> (a >> b): vector<A>
a: vector<A>, b: vector<A> --> (a >> b): vector<A>

a >> b

a: A, b: B --> (a > b): tuple<A, B>
a: A, b: Unused --> (a > b): A
a: Unused, b: B --> (a > b): B
a: Unused, b: Unused --> (a > b): Unused

a: A, b: A --> (a > b): vector<A>
a: vector<A>, b: A --> (a > b): vector<A>
a: A, b: vector<A> --> (a > b): vector<A>
a: vector<A>, b: vector<A> --> (a > b): vector<A>

a > b

a: A, b: B --> (a | b): variant<A, B>
a: A, b: Unused --> (a | b): optional<A>
a: A, b: B, c: Unused --> (a | b | c): optional<variant<A, B> >
a: Unused, b: B --> (a | b): optional
a: Unused, b: Unused --> (a | b): Unused
a: A, b: A --> (a | b): A

a | b

a: A, b: B --> (a - b): A
a: Unused, b: B --> (a - b): Unused

a - b

a: A --> *a: vector<A>
a: Unused --> *a: Unused

*a

a: A --> +a: vector<A>
a: Unused --> +a: Unused

+a

a: A, b: B --> (a % b): vector<A>
a: Unused, b: B --> (a % b): Unused

a % b

a: A --> repeat(...,...)[a]: vector<A>
a: Unused --> repeat(...,...)[a]: Unused

repeat(...,...)[p]

63

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

AttributeExpression

a: A, b: B --> (a || b): tuple<optional<A>, optional >
a: A, b: Unused --> (a || b): optional<A>
a: Unused, b: B --> (a || b): optional
a: Unused, b: Unused --> (a || b): Unused

a: A, b: A --> (a || b): vector<optional<A> >

a || b

a: A --> -a: optional<A>
a: Unused --> -a: Unused

-a

a: A --> &a: Unused&a

a: A --> !a: Unused!b

a: A, b: B --> (a ^ b): tuple<optional<A>, optional >
a: A, b: Unused --> (a ^ b): optional<A>
a: Unused, b: B --> (a ^ b): optional
a: Unused, b: Unused --> (a ^ b): Unused

a ^ b

Nonterminals

Notation

RT Synthesized attribute. The rule or grammar's return type.

Arg1, Arg2, ArgN Inherited attributes. Zero or more arguments.

L1, L2, LN Zero or more local variables.

r, r2 Rules

g A grammar

p A parser expression

my_grammar A user defined grammar

Terminology

Signature RT(Arg1, Arg2 ... ,ArgN). The signature specifies the synthesized (return value) and inherited (arguments)
attributes.

Locals locals<L1, L2 ..., LN>. The local variables.

Skipper The skip-parser type

Template Arguments

Iterator The iterator type you will use for parsing.

A1, A2, A3 Can be one of 1) Signature 2) Locals 3) Skipper.

64

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionExpression

Rule declaration. Iterator is required. A1, A2, A3 are optional and
can be specified in any order. name is an optional string that gives the
rule its name, useful for debugging and error handling.

rule<Iterator, A1, A2, A3> r(name);

Copy construct rule r from rule r2.rule<Iterator, A1, A2, A3> r(r2);

Assign rule r2 to r.r = r2;

return an alias of r. The alias is a parser that holds a reference to r.
Reference semantics.

r.alias()

Get a copy of r.r.copy()

Naming a ruler.name(name)

Getting the name of a ruler.name()

Debug rule rdebug(r)

Rule definitionr = p;

Auto-rule definition. The attribute of p should be compatible with the
synthesized attribute of r. When p is successful, its attribute is automat-
ically propagated to r's synthesized attribute.

r %= p;

Grammar definition. name is an optional string that gives the grammar
its name, useful for debugging and error handling.

template <typename Iterator>
struct my_grammar : grammar<Iterat↵
or, A1, A2, A3>
{
 my_grammar() : my_gram↵
mar::base_type(start, name)

{
// Rule definitions

 start = /* ... */;
}

 rule<Iterator, A1, A2, A3> start;
// more rule declarations...

};

Naming a grammarg.name(name)

Getting the name of a grammarg.name()

Semantic Actions

Has the form:

p[f]

where f is a function with the signatures:

65

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void f(Attrib const&);
void f(Attrib const&, Context&);
void f(Attrib const&, Context&, bool&);

You can use Boost.Bind to bind member functions. For function objects, the allowed signatures are:

void operator()(Attrib const&, unused_type, unused_type) const;
void operator()(Attrib const&, Context&, unused_type) const;
void operator()(Attrib const&, Context&, bool&) const;

The unused_type is used in the signatures above to signify 'don't care'.

For more detailed information about semantic actions see: here.

Phoenix

Boost.Phoenix makes it easier to attach semantic actions. You just inline your lambda expressions:

p[phoenix-lambda-expression]

Spirit.Qi provides some Boost.Phoenix placeholders to important information from the Attrib and Context that are otherwise
fiddly to extract.

Spirit.Qi specific Phoenix placeholders

_1, _2... , _N Nth attribute of p

_val The enclosing rule's synthesized attribute.

_r1, _r2... , _rN The enclosing rule's Nth inherited attribute.

_a, _b... , _j The enclosing rule's local variables (_a refers to the first).

_pass Assign false to _pass to force a parser failure.

Important

All placeholders mentioned above are defined in the namespace boost::spirit and, for your convenience, are
available in the namespace boost::spirit::qi as well.

For more detailed information about semantic actions see: here.

Reference

Parser Concepts

Spirit.Qi parsers fall into a couple of generalized concepts. The Parser is the most fundamental concept. All Spirit.Qi parsers are
models of the Parser concept. PrimitiveParser, UnaryParser, BinaryParser, NaryParser, and Nonterminal are all refinements of
the Parser concept.

The following sections provide details on these concepts.

66

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/bind/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/community/generic_programming.html#concept
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parser

Description

The Parser is the most fundamental concept. A Parser has a member function, parse, that accepts a first-last ForwardIterator
pair andreturns bool as its result. The iterators delimit the data being parsed.function parse, that accepts a first-last ForwardIter-
ator pair and returns bool as its result. The iterators delimit the data being parsed. The Parser's parse member function returns
true if the parse succeeds, in which case the first iterator is advanced accordingly. Each Parser can represent a specific pattern or
algorithm, or it can be a more complex parser formed as a composition of other Parsers.

Notation

p A Parser.

P A Parser type.

Iter a ForwardIterator type.

f, l ForwardIterator. first/last iterator pair.

Context The parser's Context type.

context The parser's Context, or unused.

skip A skip Parser, or unused.

attrib A Compatible Attribute, or unused.

Valid Expressions

In the expressions below, the behavior of the parser, p, and how skip and attrib are handled by p, are left unspecified in the base
Parser concept. These are specified in subsequent, more refined concepts and by the actual models thereof.

For any Parser the following expressions must be valid:

Return typeSemanticsExpression

boolMatch the input sequence starting from f. Return true if success-
ful, otherwise return false.

p.parse(f, l, context, skip, at↵
tr)

infoGet information about a Parser.p.what(context)

Type Expressions

DescriptionExpression

The Parser's expected attribute.P::template attribute<Context,

Iter>::type

Metafunction that evaluates to mpl::true_ if a certain type, P is a Parser,
mpl::false_ otherwise (See MPL Boolean Constant).

traits::is_parser<P>::type

Postcondition

Upon return from p.parse the following post conditions should hold:

• On a successful match, f is positioned one past the last matching character/token.

67

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.sgi.com/tech/stl/ForwardIterator.html
http://www.sgi.com/tech/stl/ForwardIterator.html
http://www.sgi.com/tech/stl/ForwardIterator.html
http://www.sgi.com/tech/stl/ForwardIterator.html
http://www.sgi.com/tech/stl/ForwardIterator.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/mpl/doc/refmanual/integral-constant.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• On a failed match, if a skip parser is unused, f is restored to its original position prior to entry.

• On a failed match, if a skip parser is not unused, f is positioned one past the last character/token matching skip.

• On a failed match, attrib is left untouched.

• No post-skips: trailing skip characters/tokens will not be skipped.

Models

All parsers in Spirit.Qi are models of the Parser concept.

PrimitiveParser

Description

PrimitiveParser is the most basic building block that the client uses to build more complex parsers.

Refinement of

Parser

Pre-skip

Upon entry to the parse member function, a PrimitiveParser is required to do a pre-skip. Leading skip characters/tokens will be
skipped prior to parsing. Only PrimitiveParsers are required to perform this pre-skip. This is typically carried out through a call to
qi::skip_over:

qi::skip_over(f, l, skip);

Type Expressions

DescriptionExpression

Metafunction that evaluates to mpl::true_ if a certain type, P, is a Primitive-
Parser, mpl::false_ otherwise (See MPL Boolean Constant).

traits::is_primitive_parser<P>::type

Models

• attr(attrib)

• eoi

• eol

• eps

• symbols<Ch, T>

UnaryParser

Description

UnaryParser is a composite parser that has a single subject. The UnaryParser may change the behavior of its subject following the
Delegate Design Pattern.

Refinement of

Parser

68

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/mpl/doc/refmanual/integral-constant.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Notation

p A UnaryParser.

P A UnaryParser type.

Valid Expressions

In addition to the requirements defined in Parser, for any UnaryParser the following must be met:

Return typeSemanticsExpression

ParserSubject parser.p.subject

Type Expressions

DescriptionExpression

The subject parser type.P::subject_type

Metafunction that evaluates to mpl::true_ if a certain type, P is a UnaryParser,
mpl::false_ otherwise (See MPL Boolean Constant).

traits::is_unary_parser<P>::type

Invariants

For any UnaryParser, P, the following invariant always holds:

• traits::is_parser<P::subject_type>::type evaluates to mpl::true_

Models

• And Predicate

• Kleene

• lexeme

• Not Predicate

• omit

• Plus

• raw

• repeat

• skip

BinaryParser

Description

BinaryParser is a composite parser that has a two subjects, left and right. The BinaryParser allows its subjects to be treated in
the same way as a single instance of a Parser following the Composite Design Pattern.

Refinement of

Parser

69

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/mpl/doc/refmanual/integral-constant.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Notation

p A BinaryParser.

P A BinaryParser type.

Valid Expressions

In addition to the requirements defined in Parser, for any BinaryParser the following must be met:

Return typeSemanticsExpression

ParserLeft parser.p.left

ParserRight parser.p.right

Type Expressions

DescriptionExpression

The left parser type.P::left_type

The right parser type.P::right_type

Metafunction that evaluates to mpl::true_ if a certain type, P is a BinaryParser,
mpl::false_ otherwise (See MPL Boolean Constant).

traits::is_binary_parser<P>::type

Invariants

For any BinaryParser, P, the following invariants always hold:

• traits::is_parser<P::left_type>::type evaluates to mpl::true_

• traits::is_parser<P::right_type>::type evaluates to mpl::true_

Models

• Difference

• List

NaryParser

Description

NaryParser is a composite parser that has one or more subjects. The NaryParser allows its subjects to be treated in the same way as
a single instance of a Parser following the Composite Design Pattern.

Refinement of

Parser

Notation

p A NaryParser.

P A NaryParser type.

70

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/mpl/doc/refmanual/integral-constant.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Valid Expressions

In addition to the requirements defined in Parser, for any NaryParser the following must be met:

Return typeSemanticsExpression

A Boost.Fusion Sequence of Parser types.The tuple of elements.p.elements

Type Expressions

DescriptionExpression

Elements tuple type.p.elements_type

Metafunction that evaluates to mpl::true_ if a certain type, P is a NaryParser,
mpl::false_ otherwise (See MPL Boolean Constant).

traits::is_nary_parser<P>::type

Invariants

For each element, E, in any NaryParser, P, the following invariant always holds:

• traits::is_parser<E>::type evaluates to mpl::true_

Models

• Alternative

• Expect

• Permutation

• Sequence

• Sequential Or

Nonterminal

Description

A Nonterminal is a symbol in a Parsing Expression Grammar production that represents a grammar fragment. Nonterminals may
self reference to specify recursion. This is one of the most important concepts and the reason behind the word "recursive" in recursive
descent parsing.

Refinement of

Parser

Signature

Nonterminals can have both synthesized and inherited attributes. The Nonterminal's Signature specifies both the synthesized and
inherited attributes. The specification uses the function declarator syntax:

RT(A0, A1, A2, ..., AN)

where RT is the Nonterminal's synthesized attribute and A0 ... AN are the Nonterminal's inherited attributes.

71

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/fusion/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/mpl/doc/refmanual/integral-constant.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Attributes

The Nonterminal models a C++ function. The Nonterminal's synthesized attribute is analogous to the function return value and its
inherited attributes are analogous to function arguments. The inherited attributes (arguments) can be passed in just like any Lazy
Argument, e.g.:

r(expr) // Evaluate expr at parse time and pass the result to the Nonterminal r

_val

The boost::spirit::qi::_val placeholder can be used in Phoenix semantic actions anywhere in the Nonterminal's definition.
This Phoenix placeholder refers to the Nonterminal's (synthesized) attribute. The _val placeholder acts like a mutable reference to
the Nonterminal's attribute.

_r1 ... r10

The boost::spirit::_r1 ... boost::spirit::r10 placeholders can be used in Phoenix semantic actions anywhere in the
Nonterminal's definition. These Phoenix placeholders refer to the Nonterminal's inherited attributes.

Locals

Nonterminals can have local variables that will be created on the stack at parse time. A locals descriptor added to the Nonterminal
declaration will give the Nonterminal local variables:

template <typename T0, typename T1, typename T2, ..., typename TN>
struct locals;

where T0 ... TN are the types of local variables accessible in your Phoenix semantic actions using the placeholders:

• boost::spirit::_a

• boost::spirit::_b

• boost::spirit::_c

• boost::spirit::_d

• boost::spirit::_e

• boost::spirit::_f

• boost::spirit::_g

• boost::spirit::_h

• boost::spirit::_i

• boost::spirit::_j

which correspond to the Nonterminal's local variables T0 ... T9.

Notation

x A Nonterminal

X A Nonterminal type

arg1, arg2, ..., argN Lazy Arguments that evaluate to each of the Nonterminal's inherited attributes.

72

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Valid Expressions

In addition to the requirements defined in Parser, for any Nonterminal the following must be met:

Return typeSemanticsExpression

XIn a parser expression, invoke Nonterminal xx

XIn a parser expression, invoke Nonterminal r passing in inherited attributes
arg1 ... argN

x(arg1, arg2, ..., argN)

voidNaming a Nonterminal.x.name(name)

std::stringGetting the name of a Nonterminal.x.name()

voidDebug Nonterminal x.debug(x)

Type Expressions

DescriptionExpression

The Signature of X: An MPL Forward Sequence. The first element is the Nonterminal's synthesized attribute
type and the rest are the inherited attribute types.

X::sig_type

The local variables of X: An MPL Forward Sequence.X::locals_type

Models

• rule

• grammar

Basics

Lazy Argument

Some parsers (e.g. primitives and non-terminals) may take in additional attributes. Such parsers take the form:

p(a1, a2,..., aN)

where p is a parser. Each of the arguments (a1 ... aN) can either be an immediate value, or a function, f, with signature:

T f(Unused, Context)

where T, the function's return value, is compatible with the argument type expected and Context is the parser's Context type (The
first argument is unused to make the Context the second argument. This is done for uniformity with Semantic Actions).

Character Encoding Namespace

Some parsers need to know which character set a char or wchar_t is operating on. For example, the alnum parser works differently
with ISO8859.1 and ASCII encodings. Where necessary, Spirit encodes (tags) the parser with the character set.

We have a namespace for each character set Spirit will be supporting. That includes ascii, iso8859_1, standard and stand-
ard_wide (and in the future, unicode). In each of the character encoding namespaces, we place tagged versions of parsers such
as alnum, space etc.

Example:

73

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/mpl/doc/refmanual/forward-sequence.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/mpl/doc/refmanual/forward-sequence.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

using boost::spirit::ascii::space; // use the ASCII space parser

Namespaces:

• boost::spirit::ascii

• boost::spirit::iso8859_1

• boost::spirit::standard

• boost::spirit::standard_wide

For ease of use, the components in this namespaces are also brought into the qi sub-namespaces with the same names:

• boost::spirit::qi::ascii

• boost::spirit::qi::iso8859_1

• boost::spirit::qi::standard

• boost::spirit::qi::standard_wide

Examples

All sections in the reference present some real world examples. The examples use a common test harness to keep the example code
as minimal and direct to the point as possible. The test harness is presented below.

Some includes:

#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <iostream>
#include <string>
#include <cstdlib>

Our test functions:

These functions test the parsers without attributes.

74

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename P>
void test_parser(

char const* input, P const& p, bool full_match = true)
{

using boost::spirit::qi::parse;

char const* f(input);
char const* l(f + strlen(f));
if (parse(f, l, p) && (!full_match || (f == l)))

 std::cout << "ok" << std::endl;
else

 std::cout << "fail" << std::endl;
}

template <typename P>
void test_phrase_parser(

char const* input, P const& p, bool full_match = true)
{

using boost::spirit::qi::phrase_parse;
using boost::spirit::qi::ascii::space;

char const* f(input);
char const* l(f + strlen(f));
if (phrase_parse(f, l, p, space) && (!full_match || (f == l)))

 std::cout << "ok" << std::endl;
else

 std::cout << "fail" << std::endl;
}

These functions test the parsers with user supplied attributes.

template <typename P, typename T>
void test_parser_attr(

char const* input, P const& p, T& attr, bool full_match = true)
{

using boost::spirit::qi::parse;

char const* f(input);
char const* l(f + strlen(f));
if (parse(f, l, p, attr) && (!full_match || (f == l)))

 std::cout << "ok" << std::endl;
else

 std::cout << "fail" << std::endl;
}

template <typename P, typename T>
void test_phrase_parser_attr(

char const* input, P const& p, T& attr, bool full_match = true)
{

using boost::spirit::qi::phrase_parse;
using boost::spirit::qi::ascii::space;

char const* f(input);
char const* l(f + strlen(f));
if (phrase_parse(f, l, p, space, attr) && (!full_match || (f == l)))

 std::cout << "ok" << std::endl;
else

 std::cout << "fail" << std::endl;
}

The print_info utility function prints information contained in the info class.

75

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct printer
{

typedef boost::spirit::utf8_string string;

void element(string const& tag, string const& value, int depth) const
{

for (int i = 0; i < (depth*4); ++i) // indent to depth
 std::cout << ' ';

 std::cout << "tag: " << tag;
if (value != "")

 std::cout << ", value: " << value;
 std::cout << std::endl;

}
};

void print_info(boost::spirit::info const& what)
{

using boost::spirit::basic_info_walker;

 printer pr;
 basic_info_walker<printer> walker(pr, what.tag, 0);
 boost::apply_visitor(walker, what.value);
}

String

Header

// forwards to <boost/spirit/home/support/string_traits.hpp>
#include <boost/spirit/support_string_traits.hpp>

A string can be any object s, of type, S, that satisfies the following expression traits:

SemanticsExpression

Metafunction that evaluates to mpl::true_ if a certain type, S is a string,
mpl::false_ otherwise (See MPL Boolean Constant).

boost::spirit::traits::is_string<S>

Metafunction that returns the underlying char type of a string type, S.boost::spirit::traits::char_type_of<S>

Function that returns the underlying raw C-string from s.boost::spirit::traits::get_c_string(s)

Function that returns an STL iterator from s that points to the beginning
the string.

boost::spirit::traits::get_begin(s)

Function that returns an STL iterator from s that points to the end of the
string.

boost::spirit::traits::get_end(s)

Models

Predefined models include:

• any literal string, e.g. "Hello, World",

• a pointer/reference to a null-terminated array of characters

• a std::basic_string<Char>

76

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/mpl/doc/refmanual/integral-constant.html
http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The namespace boost::spirit::traits is open for users to provide their own specializations. The customization points imple-
mented by Spirit.Qi usable to customize the behavior of parsers are described in the section Customization of Attribute Handling.

Parser API

Iterator Based Parser API

Description

The library provides a couple of free functions to make parsing a snap. These parser functions have two forms. The first form parse
works on the character level. The second phrase_parse works on the phrase level and requires skip parser. Both versions can take
in attributes by reference that will hold the parsed values on a successful parse.

Header

// forwards to <boost/spirit/home/qi/parse.hpp>
#include <boost/spirit/include/qi_parse.hpp>

For variadic attributes:

// forwards to <boost/spirit/home/qi/parse_attr.hpp>
#include <boost/spirit/include/qi_parse_attr.hpp>

The variadic attributes version of the API allows one or more attributes to be passed into the parse functions. The functions taking
two or more are usable when the parser expression is a Sequence only. In this case each of the attributes passed have to match the
corresponding part of the sequence.

For the API functions deducing the correct (matching) parser type from the supplied attribute type:

// forwards to <boost/spirit/home/qi/detail/parse_auto.hpp>
#include <boost/spirit/include/qi_parse_auto.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::qi::parse

boost::spirit::qi::phrase_parse

boost::spirit::qi::skip_flag::postskip

boost::spirit::qi::skip_flag::dont_postskip

77

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

namespace boost { namespace spirit { namespace qi
{

template <typename Iterator, typename Expr>
inline bool

 parse(
 Iterator& first

, Iterator last
, Expr const& expr);

template <typename Iterator, typename Expr
, typename Attr1, typename Attr2, ..., typename AttrN>

inline bool
 parse(
 Iterator& first

, Iterator last
, Expr const& expr
, Attr1& attr1, Attr2& attr2, ..., AttrN& attrN);

template <typename Iterator, typename Expr, typename Skipper>
inline bool

 phrase_parse(
 Iterator& first

, Iterator last
, Expr const& expr
, Skipper const& skipper
, BOOST_SCOPED_ENUM(skip_flag) post_skip = skip_flag::postskip);

template <typename Iterator, typename Expr, typename Skipper
, typename Attr1, typename Attr2, ..., typename AttrN>

inline bool
 phrase_parse(
 Iterator& first

, Iterator last
, Expr const& expr
, Skipper const& skipper
, Attr1& attr1, Attr2& attr2, ..., AttrN& attrN);

template <typename Iterator, typename Expr, typename Skipper
, typename Attr1, typename Attr2, ..., typename AttrN>

inline bool
 phrase_parse(
 Iterator& first

, Iterator last
, Expr const& expr
, Skipper const& skipper
, BOOST_SCOPED_ENUM(skip_flag) post_skip
, Attr1& attr1, Attr2& attr2, ..., AttrN& attrN);

}}}

Spirit.Qi parser API functions based on the automatic creation of the matching parser type:

78

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace boost { namespace spirit { namespace qi
{

template <typename Iterator, typename Attr>
inline bool

 parse(
 Iterator& first

, Iterator last
, Attr& attr);

template <typename Iterator, typename Attr, typename Skipper>
inline bool

 phrase_parse(
 Iterator& first

, Iterator last
, Attr& attr
, Skipper const& skipper
, BOOST_SCOPED_ENUM(skip_flag) post_skip = skip_flag::postskip);

}}}

All functions above return true if none of the involved parser components failed, and false otherwise.

The maximum number of supported arguments is limited by the preprocessor constant SPIRIT_ARGUMENTS_LIMIT. This constant
defaults to the value defined by the preprocessor constant PHOENIX_LIMIT (which in turn defaults to 10).

Note

The variadic functions with two or more attributes internally combine references to all passed attributes into a fu-
sion::vector and forward this as a combined attribute to the corresponding one attribute function.

The phrase_parse functions not taking an explicit skip_flag as one of their arguments invoke the passed skipper after a successful
match of the parser expression. This can be inhbited by using the other versions of that function while passing
skip_flag::dont_postskip to the corresponding argument.

DescriptionParameter

ForwardIterator pointing to the source to parse.Iterator

An expression that can be converted to a Qi parser.Expr

Parser used to skip white spaces.Skipper

An attribute type utilized to create the corresponding parser type from.Attr

One or more attributes.Attr1, Attr2, ..., AttrN

Stream Based Parser API

Description

The library provides a couple of Standard IO Manipulators allowing to integrate Spirit.Qi input parsing facilities with Standard input
streams. These parser manipulators have two forms. The first form, match, works on the character level. The second phrase_match
works on the phrase level and requires a skip parser. Both versions can take in attributes by reference that will hold the parsed values
on a successful parse.

79

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.sgi.com/tech/stl/ForwardIterator.html
http://www.cppreference.com/wiki/io/io_flags#manipulators
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Header

// forwards to <boost/spirit/home/qi/stream/match_manip.hpp>
#include <boost/spirit/include/qi_match.hpp>

For variadic attributes:

// forwards to <boost/spirit/home/qi/stream/match_manip_attr.hpp>
#include <boost/spirit/include/qi_match_attr.hpp>

The variadic attributes version of the API allows one or more attributes to be passed into the parse manipulators. The manipulators
taking two or more attributes are usable when the parser expression is a Sequence only. In this case each of the attributes passed
have to match the corresponding part of the sequence.

For the API functions deducing the correct (matching) parser type from the supplied attribute type:

// forwards to <boost/spirit/home/qi/match_auto.hpp>
#include <boost/spirit/include/qi_match_auto.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::qi::match

boost::spirit::qi::match_delimited

boost::spirit::qi::skip_flag::postskip

boost::spirit::qi::skip_flag::dont_postskip

80

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

namespace boost { namespace spirit { namespace qi
{

template <typename Expr>
inline <unspecified>

 match(
 Expr const& xpr);

template <typename Expr
, typename Attr1, typename Attr2, ..., typename AttrN>

inline <unspecified>
 match(
 Expr const& xpr

, Attr1& attr1, Attr2& attr2, ..., AttrN& attrN);

template <typename Expr, typename Skipper>
inline <unspecified>

 phrase_match(
 Expr const& expr

, Skipper const& s
, BOOST_SCOPED_ENUM(skip_flag) post_skip = skip_flag::postskip);

template <typename Expr, typename Skipper
, typename Attr1, typename Attr2, ..., typename AttrN>

inline <unspecified>
 phrase_match(
 Expr const& expr

, Skipper const& s
, Attr1& attr1, Attr2& attr2, ..., AttrN& attrN);

template <typename Expr, typename Skipper
, typename Attr1, typename Attr2, ..., typename AttrN>

inline <unspecified>
 phrase_match(
 Expr const& expr

, Skipper const& s
, BOOST_SCOPED_ENUM(skip_flag) post_skip
, Attr1& attr1, Attr2& attr2, ..., AttrN& attrN);

}}}

Spirit.Qi parser API functions based on the automatic creation of the matching parser type:

namespace boost { namespace spirit { namespace qi
{

template <typename Attr>
inline <unspecified>

 match(
 Attr& attr);

template <typename Attr, typename Skipper>
inline <unspecified>

 phrase_match(
 Attr& attr

, Skipper const& s
, BOOST_SCOPED_ENUM(skip_flag) post_skip = skip_flag::postskip);

}}}

All functions above return a standard IO stream manipulator instance (see Manipulators), which when streamed from an input stream
will result in parsing the input using the embedded Spirit.Qi parser expression. Any error (or failed parse) occuring during the invoc-
ation of the Spirit.Qi parsers will be reflected in the streams status flag (std::ios_base::failbit will be set).

81

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.cppreference.com/wiki/io/io_flags#manipulators
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The maximum number of supported arguments is limited by the preprocessor constant SPIRIT_ARGUMENTS_LIMIT. This constant
defaults to the value defined by the preprocessor constant PHOENIX_LIMIT (which in turn defaults to 10).

Note

The variadic manipulators with two or more attributes internally combine references to all passed attributes into a
fusion::vector and forward this as a combined attribute to the corresponding manipulator taking one attribute.

The phrase_match manipulators not taking an explicit skip_flag as one of their arguments invoke the passed skipper after a
successful match of the parser expression. This can be inhbited by using the other versions of that manipulator while passing
skip_flag::dont_postskip to the corresponding argument.

Template parameters

DescriptionParameter

An expression that can be converted to a Qi parser.Expr

Parser used to skip white spaces.Skipper

An attribute type utilized to create the corresponding parser type from.Attr

One or more attributes.Attr1, Attr2, ..., AttrN

API for Automatic Parser Creation

Description

The library implements a special API returning a parser instance for a supplied attribute type. This function finds the best matching
parser type for the attribute based on a set of simple matching rules (as outlined in the table below) applied recursively to the attribute
type. The returned parser can be utilized to match input for the provided attribute.

Header

// forwards to <boost/spirit/home/qi/auto.hpp>
#include <boost/spirit/include/qi_auto.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::qi::create_parser

boost::spirit::traits::create_parser_exists

82

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

namespace boost { namespace spirit { namespace qi
{

template <typename Attr>
inline <unspecified>

 create_parser();
}}}

The returned instance can be directly passed as the parser (or the skipping parser) to any of the Spirit.Qi API functions. Additionally
it can be assigned to a rule as the rules right hand side expression. This function will return a valid parser type only if the meta
function traits::create_parser_exists returns mpl::true_. Otherwise it will fail compiling.

namespace boost { namespace spirit { namespace traits
{

template <typename Attr>
struct create_parser_exists;

}}}

The meta function evaluates to mpl::true_ if create_parser would return a valid parser for the given type Attr.

The following table outlines the mapping rules from the attribute type to the parser type. These rules are applied recursively to create
the parser type which can be used to match input for the given attribute type.

Generator typeAttribute type

standard::char_, standard_wide::char_char, wchar_t

short_, int_, long_short, int, long

ushort_, uint_, ulong_unsigned short, unsigned int, unsigned long

float_, double_, long_doublefloat, double, long double

short_, int_, long_short, int, long

long_long, ulong_longlong long, unsigned long long

bool_bool

Kleene Star (unary '*')Any (STL) container

Sequence operator ('<<')Any Fusion sequence

Optional operator (unary '-')boost::optional<>

Alternative operator ('|')boost::variant<>

Important

The mapping for the parsers long_long and ulong_long are only available on platforms where the preprocessor
constant BOOST_HAS_LONG_LONG is defined (i.e. on platforms having native support for long long and unsigned
long long (64 bit) signed and unsigned integer types).

83

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Template parameters

DescriptionParameter

An attribute type utilized to create the corresponding parser type from.Attr

Action

Description

Semantic actions may be attached to any point in the grammar specification. They allow to call a function or function object in order
to provide the value to be output by the parser the semantic action is attached to. Semantic actions are associated with a parser using
the syntax p[], where p is an arbitrary parser expression.

Header

// forwards to <boost/spirit/home/qi/action.hpp>
#include <boost/spirit/include/qi_action.hpp>

Also, see Include Structure.

Model of

UnaryParser

Notation

a, p Instances of a parser, P

A Attribute type exposed by a parser, a

fa A (semantic action) function with signature void(Attrib&, Context, bool&). The third parameter is
a boolean flag that can be set to false to force the parser to fail. Both Context and the boolean flag are op-
tional. For more information see below.

Attrib The attribute obtained from the parse.

Context The type of the parser execution context. For more information see below.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryParser.

SemanticsExpression

If p is successful, call semantic action, fa. The function or function object fa is provided the attribute value
parsed by the parser p, plus some more context information and a mutable bool flag which can be used to fail
parsing.

p[fa]

The possible signatures for functions to be used as semantic actions are:

84

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Attrib>
void fa(Attrib& attr);

template <typename Attrib, typename Context>
void fa(Attrib& attr, Context& context);

template <typename Attrib, typename Context>
void fa(Attrib& attr, Context& context, bool& pass);

The function or function object is expected to return the value to generate output from by assigning it to the first parameter, attr.
Here Attrib is the attribute type of the parser the semantic action is attached to.

The type Context is the type of the parser execution context. This type is unspecified and depends on the context the parser is invoked
in. The value, context used by semantic actions written using Phoenix to access various context dependent attributes and values.
For more information about Phoenix placeholder expressions usable in semantic actions see Nonterminal.

The third parameter, pass, can be used by the semantic action to force the associated parser to fail. If pass is set to false the action
parser will immediately return false as well, while not invoking p and not generating any output.

Attributes

AttributeExpression

a: A --> a[fa]: Aa[fa]

Complexity

The complexity of the action parser is defined by the complexity of the parser the semantic action is attached to and the complexity
of the function or function object used as the semantic action.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

[reference_qi_action]

More examples for semantic actions can be found here: Examples of Semantic Actions.

Auto

Description

This module includes the description of the auto_ parser. This parser can be used to automatically create a parser based on the
supplied attribute type.

Header

// forwards to <boost/spirit/home/qi/auto.hpp>
#include <boost/spirit/include/qi_auto.hpp>

Also, see Include Structure.

85

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Namespace

Name

boost::spirit::auto_ // alias: boost::spirit::qi::auto_

Model of

PrimitiveParser

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveGenerator.

DescriptionExpression

Create a parser instance compatible with the supplied attribute type and use it for input matching.auto_

Additional Requirements

The auto_ parsers can be used to match input for any data type for which a mapping to a parser type is defined (the meta function
traits::create_parser_exists returns mpl::true_). The following table outlines the predefined mapping rules from the
attribute type to the parser type. These rules are applied recursively to create the parser type which can be used to match input for
the given attribute type.

Parser typeAttribute type

standard::char_, standard_wide::char_char, wchar_t

short_, int_, long_short, int, long

ushort_, uint_, ulong_unsigned short, unsigned int, unsigned long

float_, double_, long_doublefloat, double, long double

short_, int_, long_short, int, long

long_long, ulong_longlong long, unsigned long long

bool_bool

Kleene Star (unary '*')Any (STL) container

Sequence operator ('>>')Any Fusion sequence

Optional operator (unary '-')boost::optional<>

Alternative operator ('|')boost::variant<>

It is possible to add support for any custom data type by implementing a specialization of the customization point create_parser.
This customiyation can be used also to redefined anz of the predefined mappings.

86

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Attributes

AttributeExpression

hold_anyauto_

Important

The attribute type hold_any exposed by the auto_ parser is semantically and syntactically equivalent to the type
implemented by Boost.Any. It has been added to Spirit as it has better a performance and a smaller footprint if
compared to Boost.Any.

Complexity

[The complexity of the auto_ parser depends on the supplied attribute type. Each attribute type results in a different parser type to
be instantiated which defines the overall complexity.]

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <iostream>
#include <string>
#include <cstdlib>

Some using declarations:

using boost::spirit::qi::auto_;

And a class definition used in the examples:

// a simple complex number representation z = a + bi
struct complex
{
 complex (double a = 0.0, double b = 0.0)

: a(a), b(b)
{}

double a;
double b;

};

The following construct is required to allow the complex data structure to be utilized as a Boost.Fusion sequence. This is required
as we will emit output for this data structure with a Spirit.Qi sequence: '{' >> qi::double_ >> ',' >> qi::double_ >>
'}'.

87

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/any/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/any/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/fusion/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

BOOST_FUSION_ADAPT_STRUCT(
 complex,

(double, a)
(double, b)

)

We add a specialization for the create_parser customization point defining a custom output format for the complex type. Generally,
any specialization for create_parser is expected to return the proto expression to be used to match input for the type the customization
point has been specialized for.

We need to utilize proto::deep_copy as the expression contains literals (the '{', ',', and '}') which normally get embedded
in the proto expression by reference only. The deep copy converts the proto tree to hold this by value. The deep copy operation can
be left out for simpler proto expressions (not containing references to temporaries). Alternatively you could use the
proto::make_expr facility to build the required proto expression.

namespace boost { namespace spirit { namespace traits
{

template <>
struct create_parser<complex>
{

typedef proto::result_of::deep_copy<
 BOOST_TYPEOF('{' >> qi::double_ >> ',' >> qi::double_ >> '}')

>::type type;

static type call()
{

return proto::deep_copy(
'{' >> qi::double_ >> ',' >> qi::double_ >> '}');

}
};

}}}

Some usage examples of auto_ parsers:

Parse a simple integer using the generated parser component int_:

int i = 0;
test_parser_attr("123", auto_, i);
std::cout << i << std::endl; // prints: 123

Parse an instance of the complex data type as defined above using the parser as generated by the defined customization point:

complex c;
test_parser_attr("{1.2,2.4}", auto_, c);
std::cout << c.a << "," << c.b << std::endl; // prints: 1.2,2.4

Auxiliary

This module includes different auxiliary parsers not fitting into any of the other categories. This module includes the attr, attr_cast,
eoi, eol, eps, and lazy parsers.

Module Header

// forwards to <boost/spirit/home/qi/auxiliary.hpp>
#include <boost/spirit/include/qi_auxiliary.hpp>

Also, see Include Structure.

88

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Attribute (attr)

Description

The Attribute parser does not consume any input, for this reason it always matches an empty string and always succeeds. It's purpose
is to expose its specified parameter as an attribute.

Header

// forwards to <boost/spirit/home/qi/auxiliary/attr.hpp>
#include <boost/spirit/include/qi_attr.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::attr // alias: boost::spirit::qi::attr

Model of

PrimitiveParser

Notation

a A arbitrary typed constant value, e.g. 0.0, "Hello", or a variable of arbitrary type or a Lazy Argument that evaluates to an arbitrary
type.

A The type of a or if it is a Lazy Argument, its return type.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveParser.

SemanticsExpression

Create a pseudo parser exposing the current value of a as its attribute without consuming any input at parse time.attr(a)

Attributes

AttributeExpression

Aattr(a)

Complexity

O(1)

The complexity is constant as no input is consumed and no matching is done.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

89

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Some using declarations:

namespace phx = boost::phoenix;
using boost::spirit::qi::attr;

Using attr with literals:

std::string str;
test_parser_attr("", attr("boost"), str);
std::cout << str << std::endl; // will print 'boost'

double d;
test_parser_attr("", attr(1.0), d);
std::cout << d << std::endl; // will print '1.0'

Using attr with Phoenix function objects:

d = 0.0;
double d1 = 1.2;
test_parser_attr("", attr(phx::ref(d1)), d);
std::cout << d << std::endl; // will print '1.2'

Attribute Transformation Pseudo Generator (attr_cast)

Description

The attr_cast<Exposed, Transformed>() component invokes the embedded parser while supplying an attribute of type
Transformed. The supplied attribute gets created from the original attribute (of type Exposed) passed to this component using the
customization point transform_attribute.

Header

// forwards to <boost/spirit/home/qi/auxiliary/attr_cast.hpp>
#include <boost/spirit/include/qi_attr_cast.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::attr_cast // alias: boost::spirit::qi::attr_cast

Synopsis

template <Exposed, Transformed>
<unspecified> attr_cast(<unspecified>);

Template parameters

DefaultDescriptionParameter

unused_typeThe type of the attribute supplied to the attr_cast.Exposed

unused_typeThe type of the attribute expected by the embedded parser p.Transformed

90

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The attr_cast is a function template. It is possible to invoke it using the following schemes:

attr_cast(p)
attr_cast<Exposed>(p)
attr_cast<Exposed, Transformed>(p)

depending on which of the attribute types can be deduced properly if not explicitly specified.

Model of

UnaryParser

Notation

p A parser object.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryParser.

SemanticsExpression

Create a component invoking the parser p while passing an attribute of the type as normally ex-
pected by p. The type of the supplied attribute will be transformed to the type p exposes as its
attribute type (by using the attribute customization point transform_attribute).

attr_cast(p)

Create a component invoking the parser p while passing an attribute of the type as normally ex-
pected by p. The supplied attribute is expected to be of the type Exposed, it will be transformed
to the type p exposes as its attribute type (using the attribute customization point transform_at-
tribute).

attr_cast<Exposed>(p)

Create a component invoking the parser p while passing an attribute of type Transformed. The
supplied attribute is expected to be of the type Exposed, it will be transformed to the type
Transformed (using the attribute customization point transform_attribute).

attr_cast<Exposed,

Transformed>(p)

Attributes

AttributeExpression

p: A --> attr_cast(p): Aattr_cast(p)

p: A --> attr_cast<Exposed>(p): Exposedattr_cast<Exposed>(p)

p: A --> attr_cast<Exposed, Transformed>(p): Exposedattr_cast<Exposed, Transformed>(p)

Complexity

The complexity of this component is fully defined by the complexity of the embedded parser p.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

91

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

using boost::spirit::qi::int_;

The example references data structure int_data which needs a specialization of the customization point transform_attribute:

// this is just a test structure we want to use in place of an int
struct int_data
{

int i;
};

// we provide a custom attribute transformation to allow its use as an int
namespace boost { namespace spirit { namespace traits
{

// in this case we just expose the embedded 'int' as the attribute instance
// to use, allowing to leave the function 'post()' empty
template <>
struct transform_attribute<int_data, int>
{

typedef int& type;
static int& pre(int_data& d) { return d.i; }
static void post(int_data& val, int const& attr) {}

};
}}}

Now we use the attr_cast pseudo parser to invoke the attribute transformation:

int_data d = { 0 };
test_parser_attr("1", boost::spirit::qi::attr_cast(int_), d);
std::cout << d.i << std::endl;

End of Line (eol)

Description

The eol parser matches the end of line (CR/LF and combinations thereof).

Header

// forwards to <boost/spirit/home/qi/auxiliary/eol.hpp>
#include <boost/spirit/include/qi_eol.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::eol // alias: boost::spirit::qi::eol

Model of

PrimitiveParser

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveParser.

92

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

SemanticsExpression

Create a parser that matches the end of line.eol

Attributes

AttributeExpression

unusedeol

Complexity

O(1)

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::qi::eol;

Using eol:

test_parser("\n", eol);

End of Input (eoi)

Description

The eoi parser matches the end of input (returns a sucessful match with 0 length when the input is exhausted)

Header

// forwards to <boost/spirit/home/qi/auxiliary/eoi.hpp>
#include <boost/spirit/include/qi_eoi.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::eoi // alias: boost::spirit::qi::eoi

Model of

PrimitiveParser

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveParser.

93

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

SemanticsExpression

Create a parser that matches the end of input.eoi

Attributes

AttributeExpression

unusedeoi

Complexity

O(1)

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::qi::eoi;

Using eoi:

test_parser("", eoi);

Epsilon (eps)

Description

The Epsilon (eps) is a multi-purpose parser that returns a zero length match.

Simple Form

In its simplest form, eps matches the null string and always returns a match of zero length:

eps // always returns a zero-length match

This form is usually used to trigger a semantic action unconditionally. For example, it is useful in triggering error messages when a
set of alternatives fail:

r = a | b | c | eps[error()]; // Call error if a, b, and c fail to match

Semantic Predicate

Semantic predicates allow you to attach a conditional function anywhere in the grammar. In this role, the epsilon takes a Lazy Argument
that returns true or false. The Lazy Argument is typically a test that is called to resolve ambiguity in the grammar. A parse failure
will be reported when the Lazy Argument result evaluates to false. Otherwise an empty match will be reported. The general form
is:

94

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

eps(f) >> rest;

The Lazy Argument f is called to do a semantic test (say, checking if a symbol is in the symbol table). If test returns true, rest will
be evaluated. Otherwise, the production will return early with a no-match without ever touching rest.

Header

// forwards to <boost/spirit/home/qi/auxiliary/eps.hpp>
#include <boost/spirit/include/qi_eps.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::eps // alias: boost::spirit::qi::eps

Model of

PrimitiveParser

Notation

f A Lazy Argument that evaluates bool.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveParser.

SemanticsExpression

Match an empty string (always matches).eps

If f evaluates to true, return a zero length match.eps(f)

Attributes

AttributeExpression

unusedeps

Complexity

For plain (eps) the complexity is O(1). For Semantic predicates (eps(f)) the complexity is defined by the function
f.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

95

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

using boost::spirit::qi::eps;
using boost::spirit::qi::int_;
using boost::spirit::qi::_1;
namespace phx = boost::phoenix;

Basic eps:

test_parser("", eps); // always matches

This example simulates the "classic" if_p parser. Here, int_ will be tried only if the condition, c, is true.

bool c = true; // a flag
test_parser("1234", eps(phx::ref(c) == true) >> int_);

This example simulates the "classic" while_p parser. Here, the kleene loop will exit once the condition, c, becomes true. Notice
that the condition, c, is turned to false when we get to parse 4`.

test_phrase_parser("1 2 3 4",
*(eps(phx::ref(c) == true) >> int_[phx::ref(c) = (_1 == 4)]));

Lazy (lazy)

Description

The lazy parser, as its name suggests, invokes a lazy Phoenix function that returns a parser at parse time. This parser will be used
once it is created to continue the parse.

Header

// forwards to <boost/spirit/home/qi/auxiliary/lazy.hpp>
#include <boost/spirit/include/qi_lazy.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::lazy // alias: boost::spirit::qi::lazy

Model of

Parser

Notation

fp A Lazy Argument that evaluates to a Parser.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in Parser.

96

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

SemanticsExpression

Create a lazy-parser from a Lazy Argument, fp. fp will be invoked at parse time. fp is expected to return a
Parser object. This parser is then invoked in order to parse the input.

fp

Create a lazy-parser from a Lazy Argument, fp. fp will be invoked at parse time. fp is expected to return a
Parser object. This parser is then invoked in order to parse the input.

lazy(fp)

Attributes

AttributeExpression

The attribute type of the return type of fp.fp

The attribute type of the return type of fp.lazy(fp)

Complexity

The complexity of the lazy parser is determined by the complexity of the parser returned from fp.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::qi::lazy;
using boost::spirit::ascii::string;
using boost::phoenix::val;

Using lazy:

Here, the phoenix::val expression creates a function that returns its argument when invoked. The lazy expression defers the invocation
of this function at parse time. Then, this parser (string parser) is called into action. All this takes place at parse time.

test_parser("Hello", lazy(val(string("Hello"))));

The above is equivalent to:

test_parser("Hello", val(string("Hello")));

Binary

This module includes different parsers for parsing binary data in various endianness. It includes parsers for default (native), little,
and big endian binary input.

Module Header

// forwards to <boost/spirit/home/qi/binary.hpp>
#include <boost/spirit/include/qi_binary.hpp>

Also, see Include Structure.

97

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/Endianness
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Binary Native Endian

Description

Binary native endian parsers are designed to parse binary byte streams that are laid out in the native endianness of the target archi-
tecture.

Header

// forwards to <boost/spirit/home/qi/binary.hpp>
#include <boost/spirit/include/qi_binary.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::byte_ // alias: boost::spirit::qi::byte_

boost::spirit::word // alias: boost::spirit::qi::word

boost::spirit::dword // alias: boost::spirit::qi::dword

boost::spirit::qword // alias: boost::spirit::qi::qword

Note

qword is only available on platforms where the preprocessor constant BOOST_HAS_LONG_LONG is defined (i.e. on
platforms having native support for unsigned long long (64 bit) integer types).

Model of

PrimitiveParser

Notation

b A single byte (8 bit binary value) or a Lazy Argument that evaluates to a single byte. This value is always in native endian.

w A 16 bit binary value or a Lazy Argument that evaluates to a 16 bit binary value. This value is always in native endian.

dw A 32 bit binary value or a Lazy Argument that evaluates to a 32 bit binary value. This value is always in native endian.

qw A 64 bit binary value or a Lazy Argument that evaluates to a 64 bit binary value. This value is always in native endian.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveParser.

98

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/Endianness
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionExpression

Matches any 8 bit native endian binary.byte_

Matches any 16 bit native endian binary.word

Matches any 32 bit native endian binary.dword

Matches any 64 bit native endian binary.qword

Matches an exact 8 bit native endian binary.byte_(b)

Matches an exact 16 bit native endian binary.word(w)

Matches an exact 32 bit native endian binary.dword(dw)

Matches an exact 64 bit native endian binary.qword(qw)

Attributes

AttributeExpression

boost::uint_least8_tbyte_

boost::uint_least16_tword

boost::uint_least32_tdword

boost::uint_least64_tqword

unusedbyte_(b)

unusedword(w)

unuseddword(dw)

unusedqword(qw)

Complexity

O(N), where N is the number of bytes parsed

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Using declarations and variables:

99

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

using boost::spirit::qi::byte_;
using boost::spirit::qi::word;
using boost::spirit::qi::dword;
using boost::spirit::qi::qword;

boost::uint8_t uc;
boost::uint16_t us;
boost::uint32_t ui;
boost::uint64_t ul;

Basic usage of the native binary parsers for little endian platforms:

test_parser_attr("\x01", byte_, uc); assert(uc == 0x01);
test_parser_attr("\x01\x02", word, us); assert(us == 0x0201);
test_parser_attr("\x01\x02\x03\x04", dword, ui); assert(ui == 0x04030201);
test_parser_attr("\x01\x02\x03\x04\x05\x06\x07\x08", qword, ul);
assert(ul == 0x0807060504030201LL);

test_parser("\x01", byte_(0x01));
test_parser("\x01\x02", word(0x0201));
test_parser("\x01\x02\x03\x04", dword(0x04030201));
test_parser("\x01\x02\x03\x04\x05\x06\x07\x08",
 qword(0x0807060504030201LL));

Basic usage of the native binary parsers for big endian platforms:

test_parser_attr("\x01", byte_, uc); assert(uc == 0x01);
test_parser_attr("\x01\x02", word, us); assert(us == 0x0102);
test_parser_attr("\x01\x02\x03\x04", dword, ui); assert(ui == 0x01020304);
test_parser_attr("\x01\x02\x03\x04\x05\x06\x07\x08", qword, ul);
assert(0x0102030405060708LL);

test_parser("\x01", byte_(0x01));
test_parser("\x01\x02", word(0x0102));
test_parser("\x01\x02\x03\x04", dword(0x01020304));
test_parser("\x01\x02\x03\x04\x05\x06\x07\x08",
 qword(0x0102030405060708LL));

Binary Little Endian

Description

Binary little endian parsers are designed to parse binary byte streams that are laid out in little endian.

Header

// forwards to <boost/spirit/home/qi/binary.hpp>
#include <boost/spirit/include/qi_binary.hpp>

Also, see Include Structure.

100

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Namespace

Name

boost::spirit::little_word // alias: boost::spirit::qi::little_word

boost::spirit::little_dword // alias: boost::spirit::qi::little_dword

boost::spirit::little_qword // alias: boost::spirit::qi::little_qword

Note

little_qword is only available on platforms where the preprocessor constant BOOST_HAS_LONG_LONG is defined
(i.e. on platforms having native support for unsigned long long (64 bit) integer types).

Model of

PrimitiveParser

Notation

w A 16 bit binary value or a Lazy Argument that evaluates to a 16 bit binary value. This value is always in native endian.

dw A 32 bit binary value or a Lazy Argument that evaluates to a 32 bit binary value. This value is always in native endian.

qw A 64 bit binary value or a Lazy Argument that evaluates to a 64 bit binary value. This value is always in native endian.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveParser.

DescriptionExpression

Matches any 16 bit little endian binary.little_word

Matches any 32 bit little endian binary.little_dword

Matches any 64 bit little endian binary.little_qword

Matches an exact 16 bit little endian binary.little_word(w)

Matches an exact 32 bit little endian binary.little_dword(dw)

Matches an exact 32 bit little endian binary.little_qword(qw)

101

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Attributes

AttributeExpression

boost::uint_least16_tlittle_word

boost::uint_least32_tlittle_dword

boost::uint_least64_tlittle_qword

unusedlittle_word(w)

unusedlittle_dword(dw)

unusedlittle_qword(qw)

Complexity

O(N), where N is the number of bytes parsed

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Using declarations and variables:

using boost::spirit::qi::little_word;
using boost::spirit::qi::little_dword;
using boost::spirit::qi::little_qword;

boost::uint16_t us;
boost::uint32_t ui;
boost::uint64_t ul;

Basic usage of the little endian binary parsers:

test_parser_attr("\x01\x02", little_word, us); assert(us == 0x0201);
test_parser_attr("\x01\x02\x03\x04", little_dword, ui); assert(ui == 0x04030201);
test_parser_attr("\x01\x02\x03\x04\x05\x06\x07\x08", little_qword, ul);
assert(ul == 0x0807060504030201LL);

test_parser("\x01\x02", little_word(0x0201));
test_parser("\x01\x02\x03\x04", little_dword(0x04030201));
test_parser("\x01\x02\x03\x04\x05\x06\x07\x08",
 little_qword(0x0807060504030201LL));

Binary Big Endian

Description

Binary big endian parsers are designed to parse binary byte streams that are laid out in big endian.

102

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Header

// forwards to <boost/spirit/home/qi/binary.hpp>
#include <boost/spirit/include/qi_binary.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::big_word // alias: boost::spirit::qi::big_word

boost::spirit::big_dword // alias: boost::spirit::qi::big_dword

boost::spirit::big_qword // alias: boost::spirit::qi::big_qword

Note

big_qword is only available on platforms where the preprocessor constant BOOST_HAS_LONG_LONG is defined
(i.e. on platforms having native support for unsigned long long (64 bit) integer types).

Model of

PrimitiveParser

Notation

w A 16 bit binary value or a Lazy Argument that evaluates to a 16 bit binary value. This value is always in native endian.

dw A 32 bit binary value or a Lazy Argument that evaluates to a 32 bit binary value. This value is always in native endian.

qw A 64 bit binary value or a Lazy Argument that evaluates to a 64 bit binary value. This value is always in native endian.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveParser.

DescriptionExpression

Matches any 16 bit big endian binary.big_word

Matches any 32 bit big endian binary.big_dword

Matches any 64 bit big endian binary.big_qword

Matches an exact 16 bit big endian binary.big_word(w)

Matches an exact 32 bit big endian binary.big_dword(dw)

Matches an exact 32 bit big endian binary.big_qword(qw)

103

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Attributes

AttributeExpression

boost::uint_least16_tbig_word

boost::uint_least32_tbig_dword

boost::uint_least64_tbig_qword

unusedbig_word(w)

unusedbig_dword(dw)

unusedbig_qword(qw)

Complexity

O(N), where N is the number of bytes parsed

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Using declarations and variables:

using boost::spirit::qi::big_word;
using boost::spirit::qi::big_dword;
using boost::spirit::qi::big_qword;

boost::uint16_t us;
boost::uint32_t ui;
boost::uint64_t ul;

Basic usage of the big endian binary parsers:

test_parser_attr("\x01\x02", big_word, us); assert(us == 0x0102);
test_parser_attr("\x01\x02\x03\x04", big_dword, ui); assert(ui == 0x01020304);
test_parser_attr("\x01\x02\x03\x04\x05\x06\x07\x08", big_qword, ul);
assert(0x0102030405060708LL);

test_parser("\x01\x02", big_word(0x0102));
test_parser("\x01\x02\x03\x04", big_dword(0x01020304));
test_parser("\x01\x02\x03\x04\x05\x06\x07\x08",
 big_qword(0x0102030405060708LL));

Char

This module includes parsers for single characters. Currently, this module includes literal chars (e.g. 'x', L'x'), char_ (single
characters, ranges and character sets) and the encoding specific character classifiers (alnum, alpha, digit, xdigit, etc.).

104

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Module Header

// forwards to <boost/spirit/home/qi/char.hpp>
#include <boost/spirit/include/qi_char.hpp>

Also, see Include Structure.

Char (char_, lit)

Description

The char_ parser matches single characters. The char_ parser has an associated Character Encoding Namespace. This is needed
when doing basic operations such as inhibiting case sensitivity and dealing with character ranges.

There are various forms of char_.

char_

The no argument form of char_ matches any character in the assocaiated Character Encoding Namespace.

char_ // matches any character

char_(ch)

The single argument form of char_ (with a character argument) matches the supplied character.

char_('x') // matches 'x'
char_(L'x') // matches L'x'
char_(x) // matches x (a char)

char_(first, last)

char_ with two arguments, matches a range of characters.

char_('a','z') // alphabetic characters
char_(L'0',L'9') // digits

A range of characters is created from a low-high character pair. Such a parser matches a single character that is in the range, including
both endpoints. Note, the first character must be before the second, according to the underlying Character Encoding Namespace.

Character mapping is inherently platform dependent. It is not guaranteed in the standard for example that 'A' < 'Z', that is why
in Spirit2, we purposely attach a specific Character Encoding Namespace (such as ASCII, ISO-8859-1) to the char_ parser to
eliminate such ambiguities.

Note

Sparse bit vectors

To accomodate 16/32 and 64 bit characters, the char-set statically switches from a std::bitset implementation
when the character type is not greater than 8 bits, to a sparse bit/boolean set which uses a sorted vector of disjoint
ranges (range_run). The set is constructed from ranges such that adjacent or overlapping ranges are coalesced.

range_runs are very space-economical in situations where there are lots of ranges and a few individual disjoint
values. Searching is O(log n) where n is the number of ranges.

105

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

char_(def)

Lastly, when given a string (a plain C string, a std::basic_string, etc.), the string is regarded as a char-set definition string
following a syntax that resembles posix style regular expression character sets (except that double quotes delimit the set elements
instead of square brackets and there is no special negation ^ character). Examples:

char_("a-zA-Z") // alphabetic characters
char_("0-9a-fA-F") // hexadecimal characters
char_("actgACTG") // DNA identifiers
char_("\x7f\x7e") // Hexadecimal 0x7F and 0x7E

lit(ch)

lit, when passed a single character, behaves like the single argument char_ except that lit does not synthesize an attribute. A
plain char or wchar_t is equivalent to a lit.

Note

lit is reused by both the string parsers and the char parsers. In general, a char parser is created when you pass in
a character and a string parser is created when you pass in a string. The exception is when you pass a single element
literal string, e.g. lit("x"). In this case, we optimize this to create a char parser instead of a string parser.

Examples:

'x'
lit('x')
lit(L'x')
lit(c) // c is a char

Header

// forwards to <boost/spirit/home/qi/char/char.hpp>
#include <boost/spirit/include/qi_char_.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::lit // alias: boost::spirit::qi::lit

ns::char_

In the table above, ns represents a Character Encoding Namespace.

Model of

PrimitiveParser

Notation

c, f, l A literal char, e.g. 'x', L'x' or anything that can be converted to a char or wchar_t, or a Lazy
Argument that evaluates to anything that can be converted to a char or wchar_t.

ns A Character Encoding Namespace.

106

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

cs A String or a Lazy Argument that evaluates to a String that specifies a char-set definition string fol-
lowing a syntax that resembles posix style regular expression character sets (except the square
brackets and the negation ^ character).

cp A char parser, a char range parser or a char set parser.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveParser.

SemanticsExpression

Create char parser from a char, c.c

Create a char parser from a char, c.lit(c)

Create a char parser that matches any character in the ns encoding.ns::char_

Create a char parser with ns encoding from a char, c.ns::char_(c)

Create a char-range parser that matches characters from range (f to l, inclusive) with ns encoding.ns::char_(f, l)

Create a char-set parser with ns encoding from a char-set definition string, cs.ns::char_(cs)

Negate cp. The result is a negated char parser that matches any character in the ns encoding except the
characters matched by cp.

~cp

Attributes

AttributeExpression

unused or if c is a Lazy Argument, the character type returned by invoking it.c

unused or if c is a Lazy Argument, the character type returned by invoking it.lit(c)

The character type of the Character Encoding Namespace, ns.ns::char_

The character type of the Character Encoding Namespace, ns.ns::char_(c)

The character type of the Character Encoding Namespace, ns.ns::char_(f, l)

The character type of the Character Encoding Namespace, ns.ns::char_(cs)

The attribute of cp.~cp

Complexity

O(N), except for char-sets with 16-bit (or more) characters (e.g. wchar_t). These have O(log N) complexity,
where N is the number of distinct character ranges in the set.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

107

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

using boost::spirit::qi::lit;
using boost::spirit::ascii::char_;

Basic literals:

test_parser("x", 'x'); // plain literal
test_parser("x", lit('x')); // explicit literal
test_parser("x", char_('x')); // ascii::char_

Range:

char ch;
test_parser_attr("5", char_('0','9'), ch); // ascii::char_ range
std::cout << ch << std::endl; // prints '5'

Character set:

test_parser_attr("5", char_("0-9"), ch); // ascii::char_ set
std::cout << ch << std::endl; // prints '5'

Lazy char_ using Phoenix

namespace phx = boost::phoenix;
test_parser("x", phx::val('x')); // direct
test_parser("5",
 char_(phx::val('0'),phx::val('9'))); // ascii::char_ range

Char Classification (alnum, digit, etc.)

Description

The library has the full repertoire of single character parsers for character classification. This includes the usual alnum, alpha, digit,
xdigit, etc. parsers. These parsers have an associated Character Encoding Namespace. This is needed when doing basic operations
such as inhibiting case sensitivity.

Header

// forwards to <boost/spirit/home/qi/char/char_class.hpp>
#include <boost/spirit/include/qi_char_class.hpp>

Also, see Include Structure.

108

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Namespace

Name

ns::alnum

ns::alpha

ns::blank

ns::cntrl

ns::digit

ns::graph

ns::lower

ns::print

ns::punct

ns::space

ns::upper

ns::xdigit

In the table above, ns represents a Character Encoding Namespace.

Model of

PrimitiveParser

Notation

ns A Character Encoding Namespace.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveParser.

109

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

SemanticsExpression

Matches alpha-numeric charactersns::alnum

Matches alphabetic charactersns::alpha

Matches spaces or tabsns::blank

Matches control charactersns::cntrl

Matches numeric digitsns::digit

Matches non-space printing charactersns::graph

Matches lower case lettersns::lower

Matches printable charactersns::print

Matches punctuation symbolsns::punct

Matches spaces, tabs, returns, and newlinesns::space

Matches upper case lettersns::upper

Matches hexadecimal digitsns::xdigit

Attributes

The character type of the Character Encoding Namespace, ns.

Complexity

O(N)

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::ascii::alnum;
using boost::spirit::ascii::blank;
using boost::spirit::ascii::digit;
using boost::spirit::ascii::lower;

Basic usage:

110

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

test_parser("1", alnum);
test_parser(" ", blank);
test_parser("1", digit);
test_parser("a", lower);

Directive

This module includes different directives usable to augment and parametrize other parsers. It includes the no_case, lexeme, omit,
raw, repeat, matches, and skip directives.

Module Header

// forwards to <boost/spirit/home/qi/directive.hpp>
#include <boost/spirit/include/qi_directive.hpp>

Also, see Include Structure.

Inhibiting Skipping (lexeme[])

Description

The lexeme[] directive turns off white space skipping. At the phrase level, the parser ignores white spaces, possibly including
comments. Use lexeme in situations where you want to work at the character level instead of the phrase level. Parsers can be made
to work at the character level by enclosing the pertinent parts inside the lexeme directive. For example, here's a rule that parses integers:

integer = lexeme[-(lit('+') | '-') >> +digit];

The lexeme directive instructs its subject parser to work on the character level. Without it, the integer rule would have allowed
erroneous embedded white spaces in inputs such as "1 2 345" which will be parsed as "12345".

Header

// forwards to <boost/spirit/home/qi/directive/lexeme.hpp>
#include <boost/spirit/include/qi_lexeme.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::lexeme // alias: boost::spirit::qi::lexeme

Model of

UnaryParser

Notation

a A Parser.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryParser.

111

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

SemanticsExpression

Turns off white space skipping for the subject parser, a (and all its children).lexeme[a]

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A --> lexeme[a]: A
a: Unused --> lexeme[a]: Un↵
used

lexeme[a]

Complexity

The complexity is defined by the complexity of the subject parser, a

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::qi::lexeme;
using boost::spirit::qi::lit;
using boost::spirit::ascii::digit;

Simple usage of lexeme[]:

The use of lexeme here will prevent skipping in between the digits and the sign making inputs such as "1 2 345" erroneous.

test_phrase_parser("12345", lexeme[-(lit('+') | '-') >> +digit]);

Inhibiting Case Sensitivity (no_case[])

Description

The no_case[] directive does not consume any input. The actual matching is done by its subject parser. It's purpose is to force
matching of the subject parser (and all its children) to be case insensitive.

Header

// forwards to <boost/spirit/home/qi/directive/no_case.hpp>
#include <boost/spirit/include/qi_no_case.hpp>

Also, see Include Structure.

112

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Namespace

Name

ns::no_case

In the table above, ns represents a Character Encoding Namespace.

Model of

The model of no_case is the model of its subject parser.

Notation

a A Parser.

ns A Character Encoding Namespace.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in the subject's concept.

SemanticsExpression

Force matching of the subject parser, a (and all its children) to be case insensitivens::no_case[a]

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A --> ns::no_case[a]: A
a: Unused --> ns::no_case[a]: Un↵
used

ns::no_case[a]

Complexity

The complexity is defined by the complexity of the subject parser, a

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::ascii::no_case;
using boost::spirit::ascii::char_;
using boost::spirit::ascii::alnum;
using boost::spirit::qi::symbols;

Simple usage of no_case[]:

113

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

test_parser("X", no_case[char_('x')]);
test_parser("6", no_case[alnum]);

A more sophisticated use case of no_case[] in conjunction with a symbol table (see symbols<Ch, T> for more details):

symbols<char, int> sym;

sym.add
("apple", 1) // symbol strings are added in lowercase...
("banana", 2)
("orange", 3)

;

int i;
// ...because sym is used for case-insensitive parsing
test_parser_attr("Apple", no_case[sym], i);
std::cout << i << std::endl;
test_parser_attr("ORANGE", no_case[sym], i);
std::cout << i << std::endl;

Ignoring Attribute (omit[])

Description

The omit[] ignores the attribute of its subject parser replacing it with unused.

Header

// forwards to <boost/spirit/home/qi/directive/omit.hpp>
#include <boost/spirit/include/qi_omit.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::omit // alias: boost::spirit::qi::omit

Model of

UnaryParser

Notation

a A Parser.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryParser.

SemanticsExpression

Ignore the attribute of the subject parser, aomit[a]

114

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Attributes

AttributeExpression

unused_typeomit[a]

Complexity

The complexity is defined by the complexity of the subject parser, a

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::qi::omit;
using boost::spirit::qi::int_;
using boost::spirit::ascii::char_;

This parser ignores the first two characters and extracts the succeeding int:

int i;
test_parser_attr("xx345", omit[char_ >> char_] >> int_, i);
std::cout << i << std::endl; // should print 345

Transduction Parsing (raw[])

Description

The raw[] disregards the attribute of its subject parser, instead exposing the half-open range [first, last) pointing to the
matched characters from the input stream. The raw[] directive brings back the classic Spirit transduction (un-attributed) behavior
for a subject parser.

Header

// forwards to <boost/spirit/home/qi/directive/raw.hpp>
#include <boost/spirit/include/qi_raw.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::raw // alias: boost::spirit::qi::raw

Model of

UnaryParser

115

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Notation

a A Parser.

Iter A ForwardIterator type.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryParser.

SemanticsExpression

Disregard the attribute of the subject parser, a. Expose instead the half-open range [first, last) pointing to
the matched characters from the input stream.

raw[a]

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A --> raw[a]: boost::iterat↵
or_range<Iter>
a: Unused --> raw[a]: Unused

raw[a]

Note

See boost::iterator_range.

Complexity

The complexity is defined by the complexity of the subject parser, a

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::qi::raw;
using boost::spirit::ascii::alpha;
using boost::spirit::ascii::alnum;

This parser matches and extracts C++ identifiers:

116

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.sgi.com/tech/stl/ForwardIterator.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/range/doc/utility_class.html#iter_range
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::string id;
test_parser_attr("James007", raw[(alpha | '_') >> *(alnum | '_')], id);
std::cout << id << std::endl; // should print James007

Repetition (repeat[])

Description

The repeat[] provides a more powerful and flexible mechanism for repeating a parser. There are grammars that are impractical
and cumbersome, if not impossible, for the basic EBNF iteration syntax (Kleene and the Plus) to specify. Examples:

• A file name may have a maximum of 255 characters only.

• A specific bitmap file format has exactly 4096 RGB color information.

• A 256 bit binary string (1..256 1s or 0s).

Header

// forwards to <boost/spirit/home/qi/directive/repeat.hpp>
#include <boost/spirit/include/qi_repeat.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::repeat // alias: boost::spirit::qi::repeat

boost::spirit::inf // alias: boost::spirit::qi::inf

Model of

UnaryParser

Notation

a A Parser.

n, min, max An int anything that can be converted to an int, or a Lazy Argument that evaluates to anything
that can be converted to an int.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryParser.

SemanticsExpression

Repeat a zero or more times. Same as Kleene.repeat[a]

Repeat a exactly n times.repeat(n)[a]

Repeat a at least min times and at most max times.repeat(min, max)[a]

Repeat a at least min or more (continuing until a fails or the input is consumed).repeat(min, inf)[a]

117

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A --> repeat[a]: vector<A>
a: Unused --> repeat[a]: Unused

repeat[a]

a: A --> repeat(n)[a]: vector<A>
a: Unused --> repeat(n)[a]: Unused

repeat(n)[a]

a: A --> repeat(min, max)[a]: vector<A>
a: Unused --> repeat(min, max)[a]: Un↵
used

repeat(min, max)[a]

a: A --> repeat(min, inf)[a]: vector<A>
a: Unused --> repeat(min, inf)[a]: Un↵
used

repeat(min, inf)[a]

Complexity

The overall complexity is defined by the complexity of its subject parser. The complexity of repeat itself is O(N),
where N is the number of repetitions to execute.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Using the repeat directive, we can now write our examples above.

Some using declarations:

using boost::spirit::qi::repeat;
using boost::spirit::qi::lit;
using boost::spirit::qi::uint_parser;
using boost::spirit::qi::_1;
using boost::spirit::ascii::char_;
namespace phx = boost::phoenix;

A parser for a file name with a maximum of 255 characters:

test_parser("batman.jpeg", repeat(1, 255)[char_("a-zA-Z_./")]);

A parser for a specific bitmap file format which has exactly 4096 RGB color information. (for the purpose of this example, we will
be testing only 3 RGB color information.)

118

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

uint_parser<unsigned, 16, 6, 6> rgb;
std::vector<unsigned> colors;
test_parser_attr("ffffff0000003f3f3f", repeat(3)[rgb], colors);
std::cout

<< std::hex
<< colors[0] << ','
<< colors[1] << ','
<< colors[2] << std::endl;

A 256 bit binary string (1..256 1s or 0s). (For the purpose of this example, we will be testing only 16 bits.)

test_parser("1011101011110010", repeat(16)[lit('1') | '0']);

The Loop parsers can be dynamic. Consider the parsing of a binary file of Pascal-style length prefixed string, where the first byte
determines the length of the incoming string. Here's a sample input:

This trivial example cannot be practically defined in traditional EBNF. Although some EBNF variants allow more powerful repetition
constructs other than the Kleene Star, we are still limited to parsing fixed strings. The nature of EBNF forces the repetition factor to
be a constant. On the other hand, Spirit allows the repetition factor to be variable at run time. We could write a grammar that accepts
the input string above. Example using phoenix:

std::string str;
int n;
test_parser_attr("\x0bHello World",
 char_[phx::ref(n) = _1] >> repeat(phx::ref(n))[char_], str);
std::cout << n << ',' << str << std::endl; // will print "11,Hello World"

Test if Parser Succeeded (matches[])

Description

The matches[] directive executes the embedded parser and returns whether it succeeded matching.

Header

// forwards to <boost/spirit/home/qi/directive/matches.hpp>
#include <boost/spirit/include/qi_matches.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::matches // alias: boost::spirit::qi::matches

Model of

UnaryParser

Notation

a A Parser.

119

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryParser.

SemanticsExpression

Execute the subject parser a, and return as its attribute whether it succeeded. The directive itself does always
succeed.

matches[a]

Attributes

AttributeExpression

boolmatches[a]

Complexity

The complexity is defined by the complexity of the subject parser, a

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::qi::matches;
using boost::spirit::qi::int_;

This parser tries to match an int and returns true a its attribute as it succeeded matching:

bool result = false;
test_parser_attr("345", matches[int_], result);
std::cout << std::boolalpha << result << std::endl; // should print: true

This parser tries to match an int as well and returns false as its attribute as it fails matching:

result = true;
test_parser_attr("abc", matches[int_], result);
std::cout << std::boolalpha << result << std::endl; // should print: false

Re-Establish Skipping (skip[])

Description

The skip directive is the inverse of lexeme. While the lexeme directive turns off white space skipping, the skip directive turns
it on again. This is simply done by wrapping the parts inside the skip directive:

skip[a]

It is also possible to supply a skip parser to the skip directive:

120

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

skip(p)[a] // Use `p` as a skipper for parsing `a`

This makes it possible to:

• Perform localized phrase level parsing while doing character level parsing.

• Replace the current skipper anywhere with an entirely different skipper while doing phrase level parsing.

Header

// forwards to <boost/spirit/home/qi/directive/skip.hpp>
#include <boost/spirit/include/qi_skip.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::skip // alias: boost::spirit::qi::skip

Model of

UnaryParser

Notation

a A Parser.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryParser.

SemanticsExpression

Re-establish the skipper that got inhibited by lexemeskip[a]

Use p as a skipper for parsing askip(p)[a]

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A --> skip[a]: A
a: Unused --> lexeme[a]: Un↵
used

skip[a]

a: A --> skip(p)[a]: A
a: Unused --> lexeme[a]: Un↵
used

skip(p)[a]

121

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Complexity

The complexity is defined by the complexity of the subject parser, a

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::qi::skip;
using boost::spirit::qi::int_;
using boost::spirit::ascii::space;

Simple usage of skip[]:

Explicitly specify a skip parser. This parser parses comma delimited numbers, ignoring spaces.

test_parser("1, 2, 3, 4, 5", skip(space)[int_ >> *(',' >> int_)]);

Nonterminal

Module Headers

// forwards to <boost/spirit/home/qi/nonterminal.hpp>
#include <boost/spirit/include/qi_nonterminal.hpp>

Also, see Include Structure.

Rule

Description

The rule is a polymorphic parser that acts as a named placeholder capturing the behavior of a Parsing Expression Grammar expression
assigned to it. Naming a Parsing Expression Grammar expression allows it to be referenced later and makes it possible for the rule
to call itself. This is one of the most important mechanisms and the reason behind the word "recursive" in recursive descent parsing.

Header

// forwards to <boost/spirit/home/qi/nonterminal/rule.hpp>
#include <boost/spirit/include/qi_rule.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::qi::rule

122

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

template <typename Iterator, typename A1, typename A2, typename A3>
struct rule;

Template parameters

DefaultDescriptionParameter

noneThe underlying iterator type that the rule is expected to work on.Iterator

See table below.Either Signature, Skipper or Locals in any order. See table below.A1, A2, A3

Here is more information about the template parameters:

DefaultDescriptionParameter

unused_type. When Signature defaults to un-
used_type, the effect is the same as specifying
a signature of void() which is also equivalent to
unused_type()

Specifies the rule's synthesized (return value) and inherited
attributes (arguments). More on this here: Nonterminal.

Signature

unused_typeSpecifies the rule's skipper parser. Specify this if you want
the rule to skip white spaces.

Skipper

unused_typeSpecifies the rule's local variables. See Nonterminal.Locals

Model of

Nonterminal

Notation

r, r2 Rules

p A parser expression

Iterator The underlying iterator type that the rule is expected to work on.

A1, A2, A3 Either Signature, Skipper or Locals in any order.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in Nonterminal.

123

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionExpression

Rule declaration. Iterator is required. A1, A2, A3 are optional and can be specified
in any order. name is an optional string that gives the rule its name, useful for debugging
and error handling.

rule<Iterat↵
or, A1, A2, A3>
 r(name);

Copy construct rule r from rule r2.
rule<Iterat↵
or, A1, A2, A3>
 r(r2);

Assign rule r2 to r.r = r2;

return an alias of r. The alias is a parser that holds a reference to r.r.alias()

Get a copy of r.r.copy()

Rule definition. This is equivalent to r %= p (see below) if there are no semantic actions
attached anywhere in p.

r = p;

Auto-rule definition. The attribute of p should be compatible with the synthesized attribute
of r. When p is successful, its attribute is automatically propagated to r's synthesized at-
tribute.

r %= p;

Attributes

The parser attribute of the rule is T, its synthesized attribute. See Attribute

Complexity

The complexity is defined by the complexity of the RHS parser, p

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::qi::rule;
using boost::spirit::qi::int_;
using boost::spirit::qi::locals;
using boost::spirit::qi::_1;
using boost::spirit::qi::_a;
using boost::spirit::ascii::alpha;
using boost::spirit::ascii::char_;
using boost::spirit::ascii::space_type;

Basic rule:

rule<char const*> r;
r = int_;
test_parser("123", r);

124

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Rule with synthesized attribute:

rule<char const*, int()> ra;
ra = int_;
int i;
test_parser_attr("123", ra, i);
assert(i == 123);

Rule with skipper and synthesized attribute:

rule<char const*, std::vector<int>(), space_type> rs;
rs = *int_;
std::vector<int> v;
test_phrase_parser_attr("123 456 789", rs, v);
assert(v[0] == 123);
assert(v[1] == 456);
assert(v[2] == 789);

Rule with one local variable:

rule<char const*, locals<char> > rl;
rl = alpha[_a = _1] >> char_(_a); // get two identical characters
test_parser("aa", rl); // pass
test_parser("ax", rl); // fail

Grammar

Description

The grammar encapsulates a set of rules (as well as primitive parsers (PrimitiveParser) and sub-grammars). The grammar is the
main mechanism for modularization and composition. Grammars can be composed to form more complex grammars.

Header

// forwards to <boost/spirit/home/qi/nonterminal/grammar.hpp>
#include <boost/spirit/include/qi_grammar.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::qi::grammar

125

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

template <typename Iterator, typename A1, typename A2, typename A3>
struct grammar;

Template parameters

DefaultDescriptionParameter

noneThe underlying iterator type that the rule is expected to work on.Iterator

See table below.Either Signature, Skipper or Locals in any order. See table below.A1, A2, A3

Here is more information about the template parameters:

DefaultDescriptionParameter

unused_type. When Signature defaults to
unused_type, the effect is the same as specify-
ing a signature of void() which is also equival-
ent to unused_type()

Specifies the grammar's synthesized (return value) and inher-
ited attributes (arguments). More on this here: Nonterminal.

Signature

unused_typeSpecifies the grammar's skipper parser. Specify this if you
want the grammar to skip white spaces.

Skipper

unused_typeSpecifies the grammar's local variables. See Nonterminal.Locals

Model of

Nonterminal

Notation

g A grammar

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in Nonterminal.

SemanticsExpression

Grammar definition. name is an optional string that
gives the grammar its name, useful for debugging and
error handling.

template <typename Iterator>
struct my_grammar : grammar<Iterator, A1, A2, A3>
{
 my_grammar() : my_grammar::base_type(start, name)

{
// Rule definitions

 start = /* ... */;
}

 rule<Iterator, A1, A2, A3> start;
// more rule declarations...

};

126

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

The template parameters of a grammar and its start rule (the rule passed to the grammar's base class constructor)
must match, otherwise you will see compilation errors.

Attributes

The parser attribute of the grammar is T, its synthesized attribute. See Attribute

Complexity

The complexity is defined by the complexity of the its definition.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::ascii::space_type;
using boost::spirit::int_;
using boost::spirit::qi::grammar;
using boost::spirit::qi::rule;

Basic grammar usage:

struct num_list : grammar<char const*, space_type>
{
 num_list() : base_type(start)

{
using boost::spirit::int_;

 num = int_;
 start = num >> *(',' >> num);

}

 rule<char const*, space_type> start, num;
};

How to use the example grammar:

num_list nlist;
test_phrase_parser("123, 456, 789", nlist);

Numeric

The library includes a couple of predefined objects for parsing signed and unsigned integers and real numbers. These parsers are
fully parametric. Most of the important aspects of numeric parsing can be finely adjusted to suit. This includes the radix base, the
minimum and maximum number of allowable digits, the exponent, the fraction etc. Policies control the real number parsers' behavior.
There are some predefined policies covering the most common real number formats but the user can supply her own when needed.

The numeric parsers are fine tuned (employing loop unrolling and extensive template metaprogramming) with exceptional performance
that rivals the low level C functions such as atof, strtod, atol, strtol. Benchmarks reveal up to 4X speed over the C counterparts.
This goes to show that you can write extremely tight generic C++ code that rivals, if not surpasses C.

127

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Module Header

// forwards to <boost/spirit/home/qi/numeric.hpp>
#include <boost/spirit/include/qi_numeric.hpp>

Also, see Include Structure.

Unsigned Integers (uint_, etc.)

Description

The uint_parser class is the simplest among the members of the numerics package. The uint_parser can parse unsigned integers
of arbitrary length and size. The uint_parser parser can be used to parse ordinary primitive C/C++ integers or even user defined
scalars such as bigints (unlimited precision integers) as long as the type follows certain expression requirements (documented below).
The uint_parser is a template class. Template parameters fine tune its behavior.

Header

// forwards to <boost/spirit/home/qi/numeric/uint.hpp>
#include <boost/spirit/include/qi_uint.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::bin // alias: boost::spirit::qi::bin

boost::spirit::oct // alias: boost::spirit::qi::oct

boost::spirit::hex // alias: boost::spirit::qi::hex

boost::spirit::ushort_ // alias: boost::spirit::qi::ushort_

boost::spirit::ulong_ // alias: boost::spirit::qi::ulong_

boost::spirit::uint_ // alias: boost::spirit::qi::uint_

boost::spirit::ulong_long // alias: boost::spirit::qi::ulong_long

Important

ulong_long is only available on platforms where the preprocessor constant BOOST_HAS_LONG_LONG is defined
(i.e. on platforms having native support for unsigned long long (64 bit) unsigned integer types).

128

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

template <
typename T

, unsigned Radix
, unsigned MinDigits
, int MaxDigits>

struct uint_parser;

Template parameters

DefaultDescriptionParameter

noneThe numeric base type of the numeric parser.T

10The radix base. This can be either 2: binary, 8: octal, 10: decimal and 16: hexadecimal.Radix

1The minimum number of digits allowable.MinDigits

-1The maximum number of digits allowable. If this is -1, then the maximum limit becomes unbounded.MaxDigits

Model of

PrimitiveParser

Notation

NP An instance of uint_parser (type).

n An object of T, the numeric base type.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveParser.

SemanticsExpression

Instantiate and (default) construct a uint_parserNP()

Create a uint_parser<unsigned, 2, 1, -1>bin

Create a uint_parser<unsigned, 8, 1, -1>oct

Create a uint_parser<unsigned, 16, 1, -1>hex

Create a uint_parser<unsigned short, 10, 1, -1>ushort_

Create a uint_parser<unsigned long, 10, 1, -1>ulong_

Create a uint_parser<unsigned int, 10, 1, -1>uint_

Create a uint_parser<unsigned long long, 10, 1, -1>ulong_long

Attributes

T, The numeric base type of the numeric parser.

129

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Complexity

O(N), where N is the number of digits being parsed.

Minimum Expression Requirements for T

For the numeric base type, T, the expression requirements below must be valid:

SemanticsExpression

Default construct.T()

Construct from an int.T(0)

Addition.n + n

Multiplication.n * n

true or false if T bounded.std::numeric_limits<T>::is_bounded

Maximum Digits for T, radix digits. Required only if T is bounded.std::numeric_limits<T>::digits

Maximum Digits for T, base 10. Required only if T is bounded.std::numeric_limits<T>::digits10

Maximum value for T. Required only if T is bounded.std::numeric_limits<T>::max()

Minimum value for T. Required only if T is bounded.std::numeric_limits<T>::min()

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::qi::uint_;
using boost::spirit::qi::uint_parser;

Basic unsigned integers:

test_parser("12345", uint_);

Thousand separated number parser:

130

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

uint_parser<unsigned, 10, 1, 3> uint3_p; // 1..3 digits
uint_parser<unsigned, 10, 3, 3> uint3_3_p; // exactly 3 digits
test_parser("12,345,678", uint3_p >> *(',' >> uint3_3_p));

Signed Integers (int_, etc.)

Description

The int_parser can parse signed integers of arbitrary length and size. This is almost the same as the uint_parser. The only
difference is the additional task of parsing the '+' or '-' sign preceding the number. The class interface is the same as that of the
uint_parser.

The int_parser parser can be used to parse ordinary primitive C/C++ integers or even user defined scalars such as bigints (unlimited
precision integers) as long as the type follows certain expression requirements (documented below).

Header

// forwards to <boost/spirit/home/qi/numeric/int.hpp>
#include <boost/spirit/include/qi_int.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::short_ // alias: boost::spirit::qi::short_

boost::spirit::int_ // alias: boost::spirit::qi::int_

boost::spirit::long_ // alias: boost::spirit::qi::long_

boost::spirit::long_long // alias: boost::spirit::qi::long_long

Important

long_long is only available on platforms where the preprocessor constant BOOST_HAS_LONG_LONG is defined
(i.e. on platforms having native support for signed long long (64 bit) unsigned integer types).

131

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

template <
typename T

, unsigned Radix
, unsigned MinDigits
, int MaxDigits>

struct int_parser;

Template parameters

DefaultDescriptionParameter

noneThe numeric base type of the numeric parser.T

10The radix base. This can be either 2: binary, 8: octal, 10: decimal and 16: hexadecimal.Radix

1The minimum number of digits allowable.MinDigits

-1The maximum number of digits allowable. If this is -1, then the maximum limit becomes unbounded.MaxDigits

Model of

PrimitiveParser

Notation

NP An instance of int_parser (type).

n An object of T, the numeric base type.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveParser.

SemanticsExpression

Instantiate and (default) construct an int_parserNP()

Create an int_parser<short, 10, 1, -1>short_

Create an int_parser<long, 10, 1, -1>long_

Create an int_parser<int, 10, 1, -1>int_

Create an int_parser<long long, 10, 1, -1>long_long

Attributes

T, The numeric base type of the numeric parser.

Complexity

O(N), where N is the number of digits being parsed plus the sign.

Minimum Expression Requirements for T

For the numeric base type, T, the expression requirements below must be valid:

132

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

SemanticsExpression

Default construct.T()

Construct from an int.T(0)

Addition.n + n

Subtraction.n - n

Multiplication.n * n

true or false if T bounded.std::numeric_limits<T>::is_bounded

Maximum Digits for T, radix digits. Required only if T is bounded.std::numeric_limits<T>::digits

Maximum Digits for T, base 10. Required only if T is bounded.std::numeric_limits<T>::digits10

Maximum value for T. Required only if T is bounded.std::numeric_limits<T>::max()

Minimum value for T. Required only if T is bounded.std::numeric_limits<T>::min()

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::qi::int_;

Basic signed integers:

test_parser("+12345", int_);
test_parser("-12345", int_);

Real Numbers (float_, double_, etc.)

Description

The real_parser can parse real numbers of arbitrary length and size limited by its template parameter, T. The numeric base type
T can be a user defined numeric type such as fixed_point (fixed point reals) and bignum (unlimited precision numbers) as long as
the type follows certain expression requirements (documented below).

Header

// forwards to <boost/spirit/home/qi/numeric/real.hpp>
#include <boost/spirit/include/qi_real.hpp>

Also, see Include Structure.

133

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Namespace

Name

boost::spirit::float_ // alias: boost::spirit::qi::float_

boost::spirit::double_ // alias: boost::spirit::qi::double_

boost::spirit::long_double // alias: boost::spirit::qi::long_double

Synopsis

template <typename T, typename RealPolicies>
struct real_parser;

Template parameters

DefaultDescriptionParameter

noneThe numeric base type of the numeric parser.T

real_policies<T>Policies control the parser's behavior.RealPolicies

Model of

PrimitiveParser

Notation

NP An instance of real_parser (type).

RP A RealPolicies (type).

n An object of T, the numeric base type.

exp A int exponent.

b A bool flag.

f, l ForwardIterator. first/last iterator pair.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveParser.

SemanticsExpression

Instantiate and (default) construct an real_parserNP()

Create an real_parser<float, real_policies<T> >float_

Create an real_parser<double, real_policies<T> >double_

Create an real_parser<long double, real_policies<T> >long_double

134

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.sgi.com/tech/stl/ForwardIterator.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Attributes

T, The numeric base type of the numeric parser.

Complexity

O(N), where N is the number of characters (including the digits, exponent, sign, etc.) being parsed.

Minimum Expression Requirements for T

The numeric base type, T, the minimum expression requirements listed below must be valid. Take note that additional requirements
may be imposed by custom policies.

SemanticsExpression

Default construct.T()

Construct from an int.T(0)

Addition.n + n

Subtraction.n - n

Multiplication.n * n

true or false if T bounded.std::numeric_limits<T>::is_bounded

Maximum Digits for T, radix digits. Required only if T is bounded.std::numeric_limits<T>::digits

Maximum Digits for T, base 10. Required only if T is bounded.std::numeric_limits<T>::digits10

Maximum value for T. Required only if T is bounded.std::numeric_limits<T>::max()

Minimum value for T. Required only if T is bounded.std::numeric_limits<T>::min()

Multiply n by 10^exp. Default implementation is provided for float,
double and long double.

boost::spirit::traits::scale(exp, n)

Negate n if b is true. Default implementation is provided for float,
double and long double.

boost::spirit::traits::negate(b, n)

Return true if n is equal to 1.0. Default implementation is provided for
float, double and long double.

b o o s t : : s p i r -

it::traits::is_equal_to_one(n)

Note

The additional spirit real number traits above are provided to allow custom implementations to implement efficient
real number parsers. For example, for certain custom real numbers, scaling to a base 10 exponent is a very cheap
operation.

RealPolicies

The RealPolicies template parameter is a class that groups all the policies that control the parser's behavior. Policies control the
real number parsers' behavior.

The default is real_policies<T>. The default is provided to take care of the most common case (there are many ways to represent,
and hence parse, real numbers). In most cases, the default policies are sufficient and can be used straight out of the box. They are
designed to parse C/C++ style floating point numbers of the form nnn.fff.Eeee where nnn is the whole number part, fff is the

135

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

fractional part, E is 'e' or 'E' and eee is the exponent optionally preceded by '-' or '+' with the additional detection of NaN
and Inf as mandated by the C99 Standard and proposed for inclusion into the C++0x Standard: nan, nan(...), inf and infinity (the
matching is case-insensitive). This corresponds to the following grammar:

sign
= lit('+') | '-'
;

nan
= -lit("1.0#") >> no_case["nan"]

>> -('(' >> *(char_ - ')') >> ')')
;

inf
= no_case[lit("inf") >> -lit("inity")]
;

floating_literal
= -sign >>

(nan
| inf
| fractional_constant >> !exponent_part
| +digit >> exponent_part

)
;

fractional_constant
= *digit >> '.' >> +digit
| +digit >> -lit('.')
;

exponent_part
= (lit('e') | 'E') >> -sign >> +digit
;

There are four RealPolicies pre-defined for immediate use:

Table 4. Predefined Policies

DescriptionPolicies

Without sign.ureal_policies<double> >

With sign.real_policies<double> >

Without sign, dot required.strict_ureal_policies<double> >

With sign, dot required.strict_real_policies<double> >

Note

Integers are considered a subset of real numbers, so for instance, double_ recognizes integer numbers (without a
dot) just as well. To avoid this ambiguity, strict_ureal_policies and strict_real_policies require a
dot to be present for a number to be considered a successful match.

RealPolicies Expression Requirements

For models of RealPolicies the following expressions must be valid:

136

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

SemanticsExpression

Allow leading dot.RP::allow_leading_dot

Allow trailing dot.RP::allow_trailing_dot

Require a dot.RP::expect_dot

Parse the prefix sign (e.g. '-'). Return true if successful, otherwise false.RP::parse_sign(f, l)

Parse the integer at the left of the decimal point. Return true if successful, otherwise false.
If successful, place the result into n.

RP::parse_n(f, l, n)

Parse the decimal point. Return true if successful, otherwise false.RP::parse_dot(f, l)

Parse the fraction after the decimal point. Return true if successful, otherwise false. If
successful, place the result into n.

RP::parse_frac_n(f, l, n)

Parse the exponent prefix (e.g. 'e'). Return true if successful, otherwise false.RP::parse_exp(f, l)

Parse the actual exponent. Return true if successful, otherwise false. If successful, place
the result into n.

RP::parse_exp_n(f, l, n)

Parse a NaN. Return true if successful, otherwise false. If successful, place the result
into n.

RP::parse_nan(f, l, n)

Parse an Inf. Return true if successful, otherwise false. If successful, place the result
into n.

RP::parse_inf(f, l, n)

The parse_nan and parse_inf functions get called whenever:

a number to parse does not start with a digit (after having successfully parsed an optional sign)

or

after a real number of the value 1 (having no exponential part and a fractional part value of 0) has been parsed.

The first call recognizes representations of NaN or Inf starting with a non-digit character (such as NaN, Inf, QNaN etc.). The second
call recognizes representation formats starting with a 1.0 (such as "1.0#NAN" or "1.0#INF" etc.).

The functions should return true if a Nan or Inf has been found. In this case the attribute n should be set to the matched value (NaN
or Inf). The optional sign will be automatically applied afterwards.

RealPolicies Specializations

The easiest way to implement a proper real parsing policy is to derive a new type from the the type real_policies while overriding
the aspects of the parsing which need to be changed. For example, here's the implementation of the pre-defined
strict_real_policies:

137

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename T>
struct strict_real_policies : real_policies<T>
{

static bool const expect_dot = true;
};

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::qi::double_;
using boost::spirit::qi::real_parser;

Basic real number parsing:

test_parser("+12345e6", double_);

A custom real number policy:

138

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

///
// These policies can be used to parse thousand separated
// numbers with at most 2 decimal digits after the decimal
// point. e.g. 123,456,789.01
///
template <typename T>
struct ts_real_policies : boost::spirit::qi::ureal_policies<T>
{

// 2 decimal places Max
template <typename Iterator, typename Attribute>
static bool

 parse_frac_n(Iterator& first, Iterator const& last, Attribute& attr)
{

return boost::spirit::qi::
 extract_uint<T, 10, 1, 2, true>::call(first, last, attr);

}

// No exponent
template <typename Iterator>
static bool

 parse_exp(Iterator&, Iterator const&)
{

return false;
}

// No exponent
template <typename Iterator, typename Attribute>
static bool

 parse_exp_n(Iterator&, Iterator const&, Attribute&)
{

return false;
}

// Thousands separated numbers
template <typename Iterator, typename Attribute>
static bool

 parse_n(Iterator& first, Iterator const& last, Attribute& attr)
{

using boost::spirit::qi::uint_parser;
namespace qi = boost::spirit::qi;

 uint_parser<unsigned, 10, 1, 3> uint3;
 uint_parser<unsigned, 10, 3, 3> uint3_3;

 T result = 0;
if (parse(first, last, uint3, result))
{

bool hit = false;
 T n;
 Iterator save = first;

while (qi::parse(first, last, ',') && qi::parse(first, last, uint3_3, n))
{

 result = result * 1000 + n;
 save = first;
 hit = true;

}

 first = save;
if (hit)

139

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 attr = result;
return hit;

}
return false;

}
};

And its use:

real_parser<double, ts_real_policies<double> > ts_real;
test_parser("123,456,789.01", ts_real);

Boolean Parser (bool_)

Description

The bool_parser can parse booleans of arbitrary type, B. The boolean base type T can be a user defined boolean type as long as
the type follows certain expression requirements (documented below).

Header

// forwards to <boost/spirit/home/qi/numeric/bool.hpp>
#include <boost/spirit/include/qi_bool.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::bool_ // alias: boost::spirit::qi::bool_

boost::spirit::true_ // alias: boost::spirit::qi::true_

boost::spirit::false_ // alias: boost::spirit::qi::false_

Synopsis

template <typename T, typename BooleanPolicies>
struct bool_parser;

Template parameters

DefaultDescriptionParameter

boolThe boolean type of the boolean parser.B

bool_policiesPolicies control the parser's behavior.BooleanPolicies

Model of

PrimitiveParser

140

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Notation

BP An instance of bool_parser (type).

BP A boolean Policies (type).

b An object of B, the numeric base type.

f, l ForwardIterator. first/last iterator pair.

attr An attribute value.

Context The type of the parse context of the current invocation of the bool_ parser.

ctx An instance of the parse context, Context.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveParser.

SemanticsExpression

Instantiate and (default) construct a bool_parserBP()

Create a bool_parser<bool, bool_policies<bool> >bool_

Create a bool_parser<bool, bool_policies<bool> > which is succeeding only after matching "true".true_

Create a bool_parser<bool, bool_policies<bool> > which is succeeding only after matching "false".false_

Note

All boolean parsers properly respect the no_case[] directive.

Attributes

B, The boolean type of the booelan parser.

Complexity

O(N), where N is the number of characters being parsed.

Minimum Expression Requirements for B

The boolean type, B, the minimum expression requirements listed below must be valid. Take note that additional requirements may
be imposed by custom policies.

SemanticsExpression

Constructible from a bool.B(bool)

Boolean Policies

The boolean Policies template parameter is a class that groups all the policies that control the parser's behavior. Policies control
the boolean parsers' behavior.

141

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.sgi.com/tech/stl/ForwardIterator.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The default is bool_policies<bool>. The default is provided to take care of the most common case (there are many ways to
represent, and hence parse, boolean numbers). In most cases, the default policies are sufficient and can be used straight out of the
box. They are designed to parse boolean value of the form "true" and "false".

Boolean Policies Expression Requirements

For models of boolean Policies the following expressions must be valid:

SemanticsExpression

Parse a true value.BP::parse_true(f, l, attr, ctx)

Parse a false value.BP::parse_false(f, l, attr, ctx)

The functions should return true if the required representations of true or false have been found. In this case the attribute n should
be set to the matched value (true or false).

Boolean Policies Specializations

The easiest way to implement a proper boolean parsing policy is to derive a new type from the the type bool_policies while
overriding the aspects of the parsing which need to be changed. For example, here's the implementation of a boolean parsing policy
interpreting the string "eurt" (i.e. "true" spelled backwards) as false:

struct backwards_bool_policies : qi::bool_policies<>
{

// we want to interpret a 'true' spelled backwards as 'false'
template <typename Iterator, typename Attribute, typename Context>
static bool

 parse_false(Iterator& first, Iterator const& last, Attribute& attr, Context& ctx)
{

namespace qi = boost::spirit::qi;
if (qi::detail::string_parse("eurt", first, last, qi::unused, qi::unused))
{

 spirit::traits::assign_to(false, attr, ctx); // result is false
return true;

}
return false;

}
};

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::qi::bool_;
using boost::spirit::qi::bool_parser;

Basic real number parsing:

test_parser("true", bool_);
test_parser("false", bool_);

A custom real number policy:

142

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

///
// These policies can be used to parse "eurt" (i.e. "true" spelled backwards)
// as `false`
///
struct backwards_bool_policies : boost::spirit::qi::bool_policies<>
{

// we want to interpret a 'true' spelled backwards as 'false'
template <typename Iterator, typename Attribute>
static bool

 parse_false(Iterator& first, Iterator const& last, Attribute& attr)
{

namespace qi = boost::spirit::qi;
if (qi::detail::string_parse("eurt", first, last, qi::unused))
{

namespace traits = boost::spirit::traits;
 traits::assign_to(false, attr); // result is false

return true;
}
return false;

}
};

And its use:

bool_parser<bool, backwards_bool_policies> backwards_bool;
test_parser("true", backwards_bool);
test_parser("eurt", backwards_bool);

Operator

Operators are used as a means for object composition and embedding. Simple parsers may be composed to form composites through
operator overloading, crafted to approximate the syntax of Parsing Expression Grammar (PEG). An expression such as:

a | b

yields a new parser type which is a composite of its operands, a and b.

This module includes different parsers which get instantiated if one of the overloaded operators is used with more primitive parser
constructs. It includes Alternative (|), And-predicate (unary &), Difference (-), Expect (>), Kleene star (unary *), Lists (%), Not-
predicate (!), Optional (unary -), Permutation (^), Plus (unary +), Sequence (>>), and Sequential-Or (||).

Module Header

// forwards to <boost/spirit/home/qi/operator.hpp>
#include <boost/spirit/include/qi_operator.hpp>

Also, see Include Structure.

Alternative (a | b)

Description

The alternative operator, a | b, matches one of two or more operands (a, b, ... etc.):

143

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

a | b | ...

Alternative operands are tried one by one on a first-match-wins basis starting from the leftmost operand. After a successfully matched
alternative is found, the parser concludes its search, essentially short-circuiting the search for other potentially viable candidates.
This short-circuiting implicitly gives the highest priority to the leftmost alternative.

Short-circuiting is done in the same manner as C or C++'s logical expressions; e.g. if (x < 3 || y < 2) where, if x < 3, the
y < 2 test is not done at all. In addition to providing an implicit priority rule for alternatives which is necessary, given its non-de-
terministic nature, short-circuiting improves the execution time. If the order of your alternatives is logically irrelevant, strive to put
the (expected) most common choice first for maximum efficiency.

Header

// forwards to <boost/spirit/home/qi/operator/alternative.hpp>
#include <boost/spirit/include/qi_alternative.hpp>

Also, see Include Structure.

Model of

NaryParser

Notation

a, b A Parser

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in NaryParser.

SemanticsExpression

Match a or b.a | b

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A, b: B --> (a | b): variant<A, B>
a: A, b: Unused --> (a | b): optional<A>
a: A, b: B, c: Unused --> (a | b | c): optional<variant<A, B> >
a: Unused, b: B --> (a | b): optional
a: Unused, b: Unused --> (a | b): Unused
a: A, b: A --> (a | b): A

a | b

Complexity

The overall complexity of the alternative parser is defined by the sum of the complexities of its elements. The
complexity of the alternative parser itself is O(N), where N is the number of alternatives.

144

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::ascii::string;
using boost::spirit::qi::int_;
using boost::spirit::qi::_1;
using boost::variant;

Simple usage:

test_parser("Hello", string("Hello") | int_);
test_parser("123", string("Hello") | int_);

Extracting the attribute variant (using Boost.Variant):

variant<std::string, int> attr;
test_parser_attr("Hello", string("Hello") | int_, attr);

This should print "Hello". Note: There are better ways to extract the value from the variant. See Boost.Variant visitation. This code
is solely for demonstration.

if (boost::get<int>(&attr))
 std::cout << boost::get<int>(attr) << std::endl;
else
 std::cout << boost::get<std::string>(attr) << std::endl;

Extracting the attributes using Semantic Actions with Phoenix (this should print 123):

test_parser("123", (string("Hello") | int_)[std::cout << _1 << std::endl]);

And-Predicate (&a)

Description

Syntactic predicates assert a certain conditional syntax to be satisfied before evaluating another production. Similar to semantic
predicates, eps, syntactic predicates do not consume any input. The and-predicate, &a, is a positive syntactic predicate that returns
a zero length match only if its predicate matches.

Header

// forwards to <boost/spirit/home/qi/operator/and_predicate.hpp>
#include <boost/spirit/include/qi_and_predicate.hpp>

Also, see Include Structure.

Model of

UnaryParser

145

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/html/variant.html
http://www.boost.org/doc/html/variant.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Notation

a A Parser

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryParser.

SemanticsExpression

If the predicate a matches, return a zero length match. Otherwise, fail.&a

Attributes

See Compound Attribute Notation.

AttributeExpression

unused_type&a

Complexity

The complexity is defined by the complexity of the predicate, a

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::lit;

Basic look-ahead example: make sure that the last character is a semicolon, but don't consume it, just peek at the next character:

test_phrase_parser("Hello ;", lit("Hello") >> &lit(';'), false);

Difference (a - b)

Description

The difference operator, a - b, is a binary operator that matches the first (LHS) operand but not the second (RHS). 8

Header

// forwards to <boost/spirit/home/qi/operator/difference.hpp>
#include <boost/spirit/include/qi_difference.hpp>

Also, see Include Structure.

8 Unlike classic Spirit, with Spirit2, the expression will always fail if the RHS is a successful match regardless if the RHS matches less characters. For example, the
rule lit("policeman") - "police" will always fail to match. Spirit2 does not count the matching chars while parsing and there is no reliable and fast
way to check if the LHS matches more than the RHS.

146

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Model of

BinaryParser

Notation

a, b A Parser

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in BinaryParser.

SemanticsExpression

Parse a but not b.a - b

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A, b: B --> (a - b): A
a: Unused, b: B --> (a - b): Un↵
used

a - b

Complexity

The complexity of the difference parser is defined by the sum of the complexities of both operands.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::ascii::char_;

Parse a C/C++ style comment:

test_parser("/*A Comment*/", "/*" >> *(char_ - "*/") >> "*/");

Expectation (a > b)

Description

Like the Sequence, the expectation operator, a > b, parses two or more operands (a, b, ... etc.), in sequence:

147

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

a > b > ...

However, while the plain Sequence simply returns a no-match (returns false) when one of the elements fail, the expectation: >
operator throws an expectation_failure<Iter> when the second or succeeding operands (all operands except the first) fail to
match.

Header

// forwards to <boost/spirit/home/qi/operator/expect.hpp>
#include <boost/spirit/include/qi_expect.hpp>

Also, see Include Structure.

Model of

NaryParser

Notation

a, b A Parser

Iter A ForwardIterator type

Expectation Failure

When any operand, except the first, fail to match an expectation_failure<Iter> is thrown:

template <typename Iter>
struct expectation_failure : std::runtime_error
{
 Iter first; // [first, last) iterator pointing
 Iter last; // to the error position in the input.

info what_; // Information about the nature of the error.
};

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in NaryParser.

SemanticsExpression

Match a followed by b. If a fails, no-match. If b fails, throw an expectation_failure<Iter>a > b

Attributes

See Compound Attribute Notation.

148

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.sgi.com/tech/stl/ForwardIterator.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

AttributeExpression

a: A, b: B --> (a > b): tuple<A, B>
a: A, b: Unused --> (a > b): A
a: Unused, b: B --> (a > b): B
a: Unused, b: Unused --> (a > b): Unused

a: A, b: A --> (a > b): vector<A>
a: vector<A>, b: A --> (a > b): vector<A>
a: A, b: vector<A> --> (a > b): vector<A>
a: vector<A>, b: vector<A> --> (a > b): vector<A>

a > b

Complexity

The overall complexity of the expectation parser is defined by the sum of the complexities of its elements. The
complexity of the expectation operator itself is O(N), where N is the number of elements in the sequence.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::ascii::char_;
using boost::spirit::qi::expectation_failure;

The code below uses an expectation operator to throw an expectation_failure with a deliberate parsing error when "o" is ex-
pected and "i" is what is found in the input. The catch block prints the information related to the error. Note: This is low level
code that demonstrates the bare-metal. Typically, you use an Error Handler to deal with the error.

try
{
 test_parser("xi", char_('x') > char_('o')); // should throw an exception
}
catch (expectation_failure<char const*> const& x)
{
 std::cout << "expected: "; print_info(x.what_);
 std::cout << "got: \"" << std::string(x.first, x.last) << '"' << std::endl;
}

The code above will print:

expected: tag: literal-char, value: o
got: "i"

Kleene (*a)

Description

The kleene operator, *a, is a unary operator that matches its operand zero or more times.

149

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Header

// forwards to <boost/spirit/home/qi/operator/kleene.hpp>
#include <boost/spirit/include/qi_kleene.hpp>

Also, see Include Structure.

Model of

UnaryParser

Notation

a A Parser

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryParser.

SemanticsExpression

Match a zero or more times.*a

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A --> *a: vector<A>
a: Unused --> *a: Un↵
used

*a

Complexity

The overall complexity of the Kleene star is defined by the complexity of its subject, a, multiplied by the number
of repetitions. The complexity of the Kleene star itself is O(N), where N is the number successful repetitions.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::qi::int_;

Parse a comma separated list of numbers and put them in a vector:

150

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::vector<int> attr;
test_phrase_parser_attr(

"111, 222, 333, 444, 555", int_ >> *(',' >> int_), attr);
std::cout

<< attr[0] << ',' << attr[1] << ',' << attr[2] << ','
<< attr[3] << ',' << attr[4]
<< std::endl;

List (a % b)

Description

The list operator, a % b, is a binary operator that matches a list of one or more repetitions of a separated by occurrences of b. This
is equivalent to a >> *(b >> a).

Header

// forwards to <boost/spirit/home/qi/operator/list.hpp>
#include <boost/spirit/include/qi_list.hpp>

Also, see Include Structure.

Model of

BinaryParser

Notation

a, b A Parser

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in BinaryParser.

SemanticsExpression

Match a list of one or more repetitions of a separated by occurrences of b. This is equivalent to a >> *(b >>
a).

a % b

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A, b: B --> (a % b): vector<A>
a: Unused, b: B --> (a % b): Un↵
used

a % b

Complexity

The overall complexity of the List is defined by the complexity of its subject, a, multiplied by the number of repe-
titions. The complexity of the List itself is O(N), where N is the number successful repetitions.

151

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::qi::int_;

Parse a comma separated list of numbers and put them in a vector:

std::vector<int> attr;
test_phrase_parser_attr(

"111, 222, 333, 444, 555", int_ % ',', attr);
std::cout

<< attr[0] << ',' << attr[1] << ',' << attr[2] << ','
<< attr[3] << ',' << attr[4]
<< std::endl;

Not-Predicate (!a)

Description

Syntactic predicates assert a certain conditional syntax to be satisfied before evaluating another production. Similar to semantic
predicates, eps, syntactic predicates do not consume any input. The not-predicate, !a, is a negative syntactic predicate that returns
a zero length match only if its predicate fails to match.

Header

// forwards to <boost/spirit/home/qi/operator/not_predicate.hpp>
#include <boost/spirit/include/qi_not_predicate.hpp>

Also, see Include Structure.

Model of

UnaryParser

Notation

a A Parser

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryParser.

SemanticsExpression

If the predicate a matches, fail. Otherwise, return a zero length match.!a

Attributes

See Compound Attribute Notation.

152

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

AttributeExpression

unused_type!a

Complexity

The complexity is defined by the complexity of the predicate, a

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::ascii::char_;
using boost::spirit::ascii::alpha;
using boost::spirit::qi::lit;
using boost::spirit::qi::symbols;

Here's an alternative to the *(r - x) >> x idiom using the not-predicate instead. This parses a list of characters terminated by a
';':

test_parser("abcdef;", *(!lit(';') >> char_) >> ';');

The following parser ensures that we match distinct keywords (stored in a symbol table). To do this, we make sure that the keyword
does not follow an alpha or an underscore:

symbols<char, int> keywords;
keywords = "begin", "end", "for";

// This should fail:
test_parser("beginner", keywords >> !(alpha | '_'));

// This is ok:
test_parser("end ", keywords >> !(alpha | '_'), false);

// This is ok:
test_parser("for()", keywords >> !(alpha | '_'), false);

Optional (-a)

Description

The optional operator, -a, is a unary operator that matches its operand zero or one time.

Header

// forwards to <boost/spirit/home/qi/operator/optional.hpp>
#include <boost/spirit/include/qi_optional.hpp>

Also, see Include Structure.

153

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Model of

UnaryParser

Notation

a A Parser

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryParser.

SemanticsExpression

Match a zero or one time.-a

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A --> -a: option↵
al<A>
a: Unused --> -a: Un↵
used

-a

Complexity

The complexity is defined by the complexity of the operand, a

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::ascii::char_;
using boost::spirit::qi::lexeme;
using boost::spirit::qi::int_;
using boost::fusion::vector;
using boost::fusion::at_c;
using boost::optional;

Parse a person info with name (in quotes) optional age 9 and optional sex, all separated by comma.

9 James Bond is shy about his age :-)

154

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

vector<std::string, optional<int>, optional<char> > attr;

test_phrase_parser_attr(
"\"James Bond\", M"

, lexeme['"' >> +(char_ - '"') >> '"'] // name
>> -(',' >> int_) // optional age
>> -(',' >> char_) // optional sex

, attr);

// Should print: James Bond,M
std::cout << at_c<0>(attr); // print name
if (at_c<1>(attr)) // print optional age
 std::cout << ',' << *at_c<1>(attr);
if (at_c<2>(attr)) // print optional sex
 std::cout << ',' << *at_c<2>(attr);
std::cout << std::endl;

Permutation (a ^ b)

Description

The permutation operator, a ^ b, matches one or more operands (a, b, ... etc.) in any order:

a ^ b ^ ...

The operands are the elements in the permutation set. Each element in the permutation set may occur at most once, but not all elements
of the given set need to be present. For example:

char_('a') ^ 'b' ^ 'c'

matches:

"a", "ab", "abc", "cba", "bca" ... etc.

Header

// forwards to <boost/spirit/home/qi/operator/permutation.hpp>
#include <boost/spirit/include/qi_permutation.hpp>

Also, see Include Structure.

Model of

NaryParser

Notation

a, b A Parser

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in NaryParser.

SemanticsExpression

Match a or b in any order. Each operand may match zero or one time as long as at least one operand matches.a ^ b

155

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A, b: B --> (a ^ b): tuple<optional<A>, optional >
a: A, b: Unused --> (a ^ b): optional<A>
a: Unused, b: B --> (a ^ b): optional
a: Unused, b: Unused --> (a ^ b): Unused

a ^ b

Complexity

The overall complexity of the permutation parser is defined by the sum of the complexities of its elements, s,
multiplied by log s. The complexity of the permutation parser itself is O(N log N), where N is the number of ele-
ments.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::ascii::char_;

Parse a string containing DNA codes (ACTG)

test_parser("ACTGGCTAGACT", *(char_('A') ^ 'C' ^ 'T' ^ 'G'));

Plus (+a)

Description

The plus operator, +a, is a unary operator that matches its operand one or more times.

Header

// forwards to <boost/spirit/home/qi/operator/plus.hpp>
#include <boost/spirit/include/qi_plus.hpp>

Also, see Include Structure.

Model of

UnaryParser

Notation

a A Parser

156

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryParser.

SemanticsExpression

Match a one or more times.+a

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A --> +a: vector<A>
a: Unused --> +a: Un↵
used

+a

Complexity

The overall complexity of the Plus is defined by the complexity of its subject, a, multiplied by the number of repe-
titions. The complexity of the Plus itself is O(N), where N is the number successful repetitions.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::ascii::alpha;
using boost::spirit::qi::lexeme;

Parse one or more strings containing one or more alphabetic characters and put them in a vector:

std::vector<std::string> attr;
test_phrase_parser_attr("yaba daba doo", +lexeme[+alpha], attr);
std::cout << attr[0] << ',' << attr[1] << ',' << attr[2] << std::endl;

Sequence (a >> b)

Description

The sequence operator, a >> b, parses two or more operands (a, b, ... etc.), in sequence:

157

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

a >> b >> ...

Header

// forwards to <boost/spirit/home/qi/operator/sequence.hpp>
#include <boost/spirit/include/qi_sequence.hpp>

Also, see Include Structure.

Model of

NaryParser

Notation

a, b A Parser

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in NaryParser.

SemanticsExpression

Match a followed by b.a >> b

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A, b: B --> (a >> b): tuple<A, B>
a: A, b: Unused --> (a >> b): A
a: Unused, b: B --> (a >> b): B
a: Unused, b: Unused --> (a >> b): Unused

a: A, b: A --> (a >> b): vector<A>
a: vector<A>, b: A --> (a >> b): vector<A>
a: A, b: vector<A> --> (a >> b): vector<A>
a: vector<A>, b: vector<A> --> (a >> b): vector<A>

a >> b

Complexity

The overall complexity of the sequence parser is defined by the sum of the complexities of its elements. The
complexity of the sequence itself is O(N), where N is the number of elements in the sequence.

Example

Some using declarations:

158

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

using boost::spirit::ascii::char_;
using boost::spirit::qi::_1;
using boost::spirit::qi::_2;
namespace bf = boost::fusion;

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Simple usage:

test_parser("xy", char_ >> char_);

Extracting the attribute tuple (using Boost.Fusion):

bf::vector<char, char> attr;
test_parser_attr("xy", char_ >> char_, attr);
std::cout << bf::at_c<0>(attr) << ',' << bf::at_c<1>(attr) << std::endl;

Extracting the attribute vector (using STL):

std::vector<char> vec;
test_parser_attr("xy", char_ >> char_, vec);
std::cout << vec[0] << ',' << vec[1] << std::endl;

Extracting the attributes using Semantic Actions (using Phoenix):

test_parser("xy", (char_ >> char_)[std::cout << _1 << ',' << _2 << std::endl]);

Sequential Or (a || b)

Description

The sequential-or operator, a || b, matches a or b or a followed by b. That is, if both a and b match, it must be in sequence; this
is equivalent to a >> -b | b:

a || b || ...

Header

// forwards to <boost/spirit/home/qi/operator/sequential_or.hpp>
#include <boost/spirit/include/qi_sequential_or.hpp>

Also, see Include Structure.

Model of

NaryParser

Notation

a, b A Parser

159

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/fusion/doc/html/index.html
http://www.sgi.com/tech/stl/
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in NaryParser.

SemanticsExpression

Match a or b in sequence. equivalent to a >> -b | ba || b

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A, b: B --> (a || b): tuple<optional<A>, optional >
a: A, b: Unused --> (a || b): optional<A>
a: Unused, b: B --> (a || b): optional
a: Unused, b: Unused --> (a || b): Unused

a: A, b: A --> (a || b): vector<optional<A> >

a || b

Note

The sequential-or parser behaves attribute-wise very similar to the plain sequence parser (a >> b) in the sense that
it exposes the attributes of its elements separately. For instance, if you attach a semantic action to the whole sequential-
or:

(int_ || int_)[print_pair(_1, _2)]

the function object print_pair would be invoked with the attribute of the first int_ (boost::optional<int>)
as its first parameter and the attribute of the second int_ (boost::optional<int> as well) as its second para-
meter.

Complexity

The overall complexity of the sequential-or parser is defined by the sum of the complexities of its elements. The
complexity of the sequential-or itself is O(N), where N is the number of elements in the sequence.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::qi::int_;

Correctly parsing a number with optional fractional digits:

160

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

test_parser("123.456", int_ || ('.' >> int_)); // full
test_parser("123", int_ || ('.' >> int_)); // just the whole number
test_parser(".456", int_ || ('.' >> int_)); // just the fraction

A naive but incorrect solution would try to do this using optionals (e.g.):

int_ >> -('.' >> int_) // will not match ".456"
-int_ >> ('.' >> int_) // will not match "123"
-int_ >> -('.' >> int_) // will match empty strings! Ooops.

Stream

This module includes the description of the different variants of the stream parser. It can be used to utilize existing streaming oper-
ators (operator>>(std::istream&, ...)) for input parsing.

Header

// forwards to <boost/spirit/home/qi/stream.hpp>
#include <boost/spirit/include/qi_stream.hpp>

Also, see Include Structure.

Stream (stream, wstream, etc.)

Description

The stream_parser is a primitive which allows to use pre-existing standard streaming operators for input parsing integrated with
Spirit.Qi. It provides a wrapper parser dispatching the underlying input stream to the stream operator of the corresponding attribute
type to be parsed. Any value a to be parsed using the stream_parser will result in invoking the standard streaming operator for
its type A, for instance:

std::istream& operator>> (std::istream&, A&);

Header

// forwards to <boost/spirit/home/qi/stream.hpp>
#include <boost/spirit/include/qi_stream.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::stream // alias: boost::spirit::qi::stream

boost::spirit::wstream // alias: boost::spirit::qi::wstream

161

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

template <typename Char, typename Attrib>
struct stream_parser;

Template parameters

DefaultDescriptionParameter

charThe character type to use to generate the input. This type will be used while assigning
the generated characters to the underlying input iterator.

Char

spirit::hold_anyThe type of the attribute the stream_parser is expected to parse its input into.Attrib

Model of

PrimitiveParser

Notation

s A variable instance of any type with a defined matching streaming operator>>() or a Lazy Argument that evaluates to any
type with a defined matching streaming operator>>().

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveParser.

DescriptionExpression

Call the streaming operator>>() for the type of the mandatory attribute. The input recognized by this operator
will be the result of the stream parser. This parser never fails (unless the underlying input stream reports an error).
The character type of the I/O istream is assumed to be char.

stream

Call the streaming operator>>() for the type of the mandatory attribute. The input recognized by this operator
will be the result of the wstream parser. This parser never fails (unless the underlying input stream reports an
error). The character type of the I/O istream is assumed to be wchar_t.

wstream

All parsers listed in the table above are predefined specializations of the stream_parser<Char> basic stream parser type described
below. It is possible to directly use this type to create stream parsers using an arbitrary underlying character type.

SemanticsExpression

Call the streaming operator>>() for the type of the optional attribute, Attrib. The input recognized
by this operator will be the result of the stream_parser<> parser. This parser never fails (unless the
underlying input stream reports an error). The character type of the I/O istream is assumed to be Char

stream_parser<
 Char, At↵
trib
>()

Additional Requirements

All of the stream parsers listed above require the type of the value to parse (the associated attribute) to implement a streaming oper-
ator conforming to the usual I/O streams conventions (where attribute_type is the type of the value to recognize while parse):

162

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Istream>
Istream& operator>> (Istream& os, attribute_type& attr)
{

// type specific input parsing
return os;

}

This operator will be called by the stream parsers to gather the input for the attribute of type attribute_type.

Note

If the stream parser is invoked inside a match (or phrase_match) stream manipulator the Istream passed to
the operator>>() will have registered (imbued) the same standard locale instance as the stream the match (or
phrase_match) manipulator has been used with. This ensures all facets registered (imbued) with the original I/O
stream object are used during input parsing.

Attributes

AttributeExpression

spirit::hold_anystream

spirit::hold_anywstream

Attribstream_parser<Char, Attrib>()

Important

The attribute type spirit::hold_any exposed by some of the stream parsers is semantically and syntactically
equivalent to the type implemented by Boost.Any. It has been added to Spirit as it has better performance and a
smaller footprint than Boost.Any.

Complexity

O(N), where N is the number of characters consumed by the stream parser

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

A class definition used in the examples:

163

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/any/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/any/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// a simple complex number representation z = a + bi
struct complex
{
 complex (double a = 0.0, double b = 0.0)

: a(a), b(b)
{}

double a;
double b;

};

// define streaming operator for the type complex
std::istream&
operator>> (std::istream& is, complex& z)
{

char lbrace = '\0', comma = '\0', rbrace = '\0';
 is >> lbrace >> z.a >> comma >> z.b >> rbrace;

if (lbrace != '{' || comma != ',' || rbrace != '}')
 is.setstate(std::ios_base::failbit);

return is;
}

Using declarations and variables:

using boost::spirit::qi::stream;
using boost::spirit::qi::stream_parser;

Parse a simple string using the operator>>(istream&, std::string&);

std::string str;
test_parser_attr("abc", stream, str);
std::cout << str << std::endl; // prints: abc

Parse our complex type using the operator>>(istream&, complex&);

complex c;
test_parser_attr("{1.0,2.5}", stream_parser<char, complex>(), c);
std::cout << c.a << "," << c.b << std::endl; // prints: 1.0,2.5

String

This module includes parsers for strings. Currently, this module includes the literal and string parsers and the symbol table.

Module Header

// forwards to <boost/spirit/home/qi/string.hpp>
#include <boost/spirit/include/qi_string.hpp>

Also, see Include Structure.

164

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

String (string, lit)

Description

The string parser matches a string of characters. The string parser is an implicit lexeme: the skip parser is not applied in between
characters of the string. The string parser has an assocaiated Character Encoding Namespace. This is needed when doing basic
operations such as inhibiting case sensitivity. Examples:

string("Hello")
string(L"Hello")
string(s) // s is a std::string

lit, like string, also matches a string of characters. The main difference is that lit does not synthesize an attribute. A plain string
like "hello" or a std::basic_string is equivalent to a lit. Examples:

"Hello"
lit("Hello")
lit(L"Hello")
lit(s) // s is a std::string

Header

// forwards to <boost/spirit/home/qi/string/lit.hpp>
#include <boost/spirit/include/qi_lit.hpp>

Namespace

Name

boost::spirit::lit // alias: boost::spirit::qi::lit

ns::string

In the table above, ns represents a Character Encoding Namespace.

Model of

PrimitiveParser

Notation

s A String or a Lazy Argument that evaluates to a String.

ns A Character Encoding Namespace.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveParser.

SemanticsExpression

Create string parser from a string, s.s

Create a string parser from a string, s.lit(s)

Create a string parser with ns encoding from a string, s.ns::string(s)

165

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Attributes

AttributeExpression

unuseds

unusedlit(s)

std::basic_string<T> where T is the underlying character type of s.ns::string(s)

Complexity

O(N)

where N is the number of characters in the string to be parsed.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::qi::lit;
using boost::spirit::ascii::string;

Basic literals:

test_parser("boost", "boost"); // plain literal
test_parser("boost", lit("boost")); // explicit literal
test_parser("boost", string("boost")); // ascii::string

From a std::string

std::string s("boost");
test_parser("boost", s); // direct
test_parser("boost", lit(s)); // explicit
test_parser("boost", string(s)); // ascii::string

Lazy strings using Phoenix

namespace phx = boost::phoenix;
test_parser("boost", phx::val("boost")); // direct
test_parser("boost", lit(phx::val("boost"))); // explicit
test_parser("boost", string(phx::val("boost"))); // ascii::string

Symbols (symbols)

Description

The class symbols implements a symbol table: an associative container (or map) of key-value pairs where the keys are strings. The
symbols class can work efficiently with 8, 16, 32 and even 64 bit characters.

166

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Traditionally, symbol table management is maintained seperately outside the grammar through semantic actions. Contrary to standard
practice, the Spirit symbol table class symbols is-a parser, an instance of which may be used anywhere in the grammar specification.
It is an example of a dynamic parser. A dynamic parser is characterized by its ability to modify its behavior at run time. Initially, an
empty symbols object matches nothing. At any time, symbols may be added, thus, dynamically altering its behavior.

Header

// forwards to <boost/spirit/home/qi/string/symbols.hpp>
#include <boost/spirit/include/qi_symbols.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::qi::symbols

boost::spirit::qi::tst

boost::spirit::qi::tst_map

Synopsis

template <typename Char, typename T, typename Lookup>
struct symbols;

Template parameters

DefaultDescriptionParameter

charThe character type of the symbol strings.Char

unused_typeThe data type associated with each symbol.T

tst<Char, T>The symbol search implementationLookup

Model of

PrimitiveParser

Notation

Sym A symbols type.

Char A character type.

T A data type.

sym, sym2 symbols objects.

sseq An STL container of strings.

dseq An STL container of data with value_type T.

s1...sN A String.

167

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

d1...dN Objects of type T.

f A callable function or function object.

f, l ForwardIterator first/last pair.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveParser.

SemanticsExpression

Construct an empty symbols.Sym()

Copy construct a symbols from sym2 (Another symbols object).Sym(sym2)

Construct symbols from sseq (An STL container of strings).Sym(sseq)

Construct symbols from sseq and dseq (An STL container of strings and an STL
container of data with value_type T).

Sym(sseq, dseq)

Assign sym2 to sym.sym = sym2

Assign one or more symbols (s1...sN) to sym.sym = s1, s2, ..., sN

Add one or more symbols (s1...sN) to sym.sym += s1, s2, ..., sN

Add one or more symbols (s1...sN) to sym.sym.add(s1)(s2)...(sN)

Add one or more symbols (s1...sN) with associated data (d1...dN) to sym.sym.add(s1, d1)(s2, d2)...(sN,

dN)

Remove one or more symbols (s1...sN) from sym.sym -= s1, s2, ..., sN

Remove one or more symbols (s1...sN) from sym.sym.remove(s1)(s2)...(sN)

Erase all of the symbols in sym.sym.clear()

Return a reference to the object associated with symbol, s. If sym does not already
contain such an object, at inserts the default object T().

sym.at(s)

Return a pointer to the object associated with symbol, s. If sym does not already
contain such an object, find returns a null pointer.

sym.find(s)

Return a pointer to the object associated with longest symbol that matches the begin-
ning of the range [f, l), and updates f to point to one past the end of that match.
If no symbol matches, then return a null pointer, and f is unchanged.

sym.prefix_find(f, l)

For each symbol in sym, s, a std::basic_string<Char> with associated data, d,
an object of type T, invoke f(s, d).

sym.for_each(f)

Attributes

The attribute of symbol<Char, T> is T.

Complexity

The default implementation uses a Ternary Search Tree (TST) with complexity:

168

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

O(log n+k)

Where k is the length of the string to be searched in a TST with n strings.

TSTs are faster than hashing for many typical search problems especially when the search interface is iterator based. TSTs are many
times faster than hash tables for unsuccessful searches since mismatches are discovered earlier after examining only a few characters.
Hash tables always examine an entire key when searching.

An alternative implementation uses a hybrid hash-map front end (for the first character) plus a TST: tst_map. This gives us a
complexity of

O(1 + log n+k-1)

This is found to be significantly faster than plain TST, albeit with a bit more memory usage requirements (each slot in the hash-map
is a TST node). If you require a lot of symbols to be searched, use the tst_map implementation. This can be done by using tst_map
as the third template parameter to the symbols class:

symbols<Char, T, tst_map<Char, T> > sym;

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::qi::symbols;

Symbols with data:

symbols<char, int> sym;

sym.add
("Apple", 1)
("Banana", 2)
("Orange", 3)

;

int i;
test_parser_attr("Banana", sym, i);
std::cout << i << std::endl;

When symbols is used for case-insensitive parsing (in a no_case directive), added symbol strings should be in lowercase. Symbol
strings containing one or more uppercase characters will not match any input when symbols is used in a no_case directive.

169

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

symbols<char, int> sym;

sym.add
("apple", 1) // symbol strings are added in lowercase...
("banana", 2)
("orange", 3)

;

int i;
// ...because sym is used for case-insensitive parsing
test_parser_attr("Apple", no_case[sym], i);
std::cout << i << std::endl;
test_parser_attr("ORANGE", no_case[sym], i);
std::cout << i << std::endl;

Karma - Writing Generators

Tutorials

Quick Start

Spirit.Karma - what's that?

Throughout the description of Spirit.Karma we will try to align ourselves very much with the documentation for Spirit.Qi. The
reasons are manyfold:

• Spirit.Karma is the counterpart to Spirit.Qi. Some people say it's the Yin to Spirit.Qi's Yang. Spirit.Karma is generating byte se-
quences from internal data structures as Spirit.Qi is parsing byte sequences into those (very same) internal data structures.

• Both libraries have an almost identical structure, very similar semantics, and are both built using identical tools. Both libraries
implement a language casting the specifics of their domain (parsing and generating) into a simple interface.

Why should you use a generator library for such a simple thing as output generation? Programmers have been using printf,
std::stream formatting, or boost::format for quite some time. The answer is - yes, for simple output formatting tasks those
familiar tools might be a quick solution. But experience shows: as soon as the formatting requirements are becoming more complex
output generation is getting more and more challanging in terms of readability, maintainabilty, and flexibility of the code. Last, but
not least, it turns out that code using Spirit.Karma runs much faster than equivalent code using either of the 'straight' methods mentioned
above (see here for some numbers: Performance of Numeric Generators)

You might argue that more complex tasks require more complex tools. But this turns out not to be the case! The whole Spirit library
is designed to be simple to use, while being scalable from trivial to very complicated applications.

In terms of development simplicity and ease in deployment, the same is true for Spirit.Karma as has been described elsewhere in
this documentation for Spirit.Qi: the entire library consists of only header files, with no libraries to link against or build. Just put the
spirit distribution in your include path, compile and run. Code size? Very tight, essentially comparable to hand written code.

The Spirit.Karma tutorials are built in a walk through style, starting with elementary things growing step by step in complexity. And
again: keep in mind output generation is the exact opposite of parsing. Everything you already learnt about parsing using Spirit.Qi
is applicable to generating formatted output using Spirit.Karma. All you have to do is to look at Spirit.Karma as being a mirror image
of Spirit.Qi.

Warming up

Learning how to use Spirit.Karma is really simple. We will start from trivial examples, ramping up as we go.

Trivial Example #1 Generating a number

Let's create a generator that will output a floating-point number:

170

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

double_

Easy huh? The above code actually instantiates a Spirit floating point generator (a built-in generator). Spirit has many pre-defined
generators and consistent naming conventions will help you finding your way through the maze. Especially important to note is that
things related to identical entities (as in this case, floating point numbers) are named identically in Spirit.Karma and in Spirit.Qi.
Actually, both libraries are using the very same variable instance to refer to a floating point generator or parser: double_.

Trivial Example #2 Generating two numbers

Now, let's create a generator that will output a line consisting of two floating-point numbers.

double_ << double_

Here you see the familiar floating-point numeric generator double_ used twice, once for each number. If you are used to see the
'>>' operator for concatenating two parsers in Spirit.Qi you might wonder, what's that '<<' operator doing in there? We decided
to distinguish generating and parsing of sequences the same way as the std::stream libraries do: we use operator '>>' for input
(parsing), and operator '<<' for output (generating). Other than that there is no significant difference. The above program creates
a generator from two simpler generators, glueing them together with the sequence operator. The result is a generator that is a com-
position of smaller generators. Whitespace between numbers can implicitly be inserted depending on how the generator is invoked
(see below).

Note

When we combine generators, we end up with a "bigger" generator, but it's still a generator. Generators can get
bigger and bigger, nesting more and more, but whenever you glue two generators together, you end up with one
bigger generator. This is an important concept.

Trivial Example #3 Generating one or more numbers

Now, creating output for two numbers is not too interesting. Let's create a generator that will output zero or more floating-point
numbers in a row.

*double_

This is like a regular-expression Kleene Star. We moved the * to the front for the same reasons we did in Spirit.Qi: we must work
with the syntax rules of C++. But if you know regular expressions (and for sure you remember those C++ syntax rules) it will start
to look very familiar in a matter of a very short time.

Any expression that evaluates to a generator may be used with the Kleene Star. Keep in mind, though, that due to C++ operator
precedence rules you may need to put the expression in parentheses for complex expressions. As above, whitespace can be inserted
implicitely in between the generated numbers, if needed.

Trivial Example #4 Generating a comma-delimited list of numbers

We follow the lead of Spirit.Qi's warming up section and will create a generator that produces a comma-delimited list of numbers.

double_ << *(lit(',') << double_)

Notice lit(','). It is a literal character generator that simply generates the comma ','. In this case, the Kleene Star is modifying
a more complex generator, namely, the one generated by the expression:

(lit(',') << double_)

Note that this is a case where the parentheses are necessary. The Kleene Star encloses the complete expression above, repeating the
whole pattern in the generated output zero or more times.

171

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Let's Generate!

We're done with defining the generator. All that's left is to invoke the generator to do its work. For now, we will use the gener-
ate_delimited function. One overload of this function accepts four arguments:

1. An output iterator accepting the generated characters

2. The generator expression

3. Another generator called the delimiting generator

4. The data to format and output

While comparing this minimal example with an equivalent parser example we notice a significant difference. It is possible (and ac-
tually, it makes a lot of sense) to use a parser without creating any internal representation of the parsed input (i.e. without 'producing'
any data from the parsed input). Using a parser in this mode checks the provided input against the given parser expression allowing
to verify whether the input is parsable. For generators this mode doesn't make any sense. What is output generation without generating
any output? So we always will have to supply the data the output should be generated from. In our example we supply a vector of
double numbers as the last parameter to the function generate_delimited (see code below).

In this example, we wish to delimit the generated numbers by spaces. Another generator named space is included in Spirit's repertoire
of predefined generators. It is a very trivial generator that simply produces spaces. It is the equivalent to writing lit(' '), or simply
' '. It has been implemented for similarity with the corresponding predefined space parser. We will use space as our delimiter.
The delimiter is the one responsible for inserting characters in between generator elements such as the double_ and lit.

Ok, so now let's generate (for the complete source code of this example please refer to num_list1.cpp).

template <typename OutputIterator>
bool generate_numbers(OutputIterator& sink, std::list<double> const& v)
{

using karma::double_;
using karma::generate_delimited;
using ascii::space;

bool r = generate_delimited(
 sink, // destination: output iterator
 double_ << *(',' << double_), // the generator
 space, // the delimiter-generator
 v // the data to output

);
return r;

}

Note

You might wonder how a vector<double>, which is actually a single data structure, can be used as an argument
(we call it attribute) to a sequence of generators. This seems to be counter intuitive and doesn't match with your
experience of using printf, where each formatting placeholder has to be matched with a corresponding argument.
Well, we will explain this behavior in more detail later in this tutorial. For now just consider this to be a special
case, implemented on purpose to allow more flexible output formatting of STL containers: sequences accept a single
container attribute if all elements of this sequence accept attributes compatible with the elements held by this con-
tainer.

The generate function returns true or false depending on the result of the output generation. As outlined in different places of
this documentation, a generator may fail for different reasons. One of the possible reasons is an error in the underlying output iterator
(memory exhausted or disk full, etc.). Another reason might be that the data doesn't match the requirements of a particular generator.

172

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/karma/num_list1.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

char and wchar_t operands

The careful reader may notice that the generator expression has ',' instead of lit(',') as the previous examples
did. This is ok due to C++ syntax rules of conversion. Spirit provides << operators that are overloaded to accept a
char or wchar_t argument on its left or right (but not both). An operator may be overloaded if at least one of its
parameters is a user-defined type. In this case, the double_ is the 2nd argument to operator<<, and so the proper
overload of << is used, converting ',' into a character literal generator.

The problem with omiting the lit should be obvious: 'a' << 'b' is not a spirit generator, it is a numeric expression,
left-shifting the ASCII (or another encoding) value of 'a' by the ASCII value of 'b'. However, both lit('a')
<< 'b' and 'a' << lit('b') are Spirit sequence generators for the letter 'a' followed by 'b'. You'll get used
to it, sooner or later.

Note that we inlined the generator directly in the call to generate_delimited. Upon calling this function, the expression evaluates
into a temporary, unnamed generator which is passed into the generate_delimited function, used, and then destroyed.

Here, we chose to make the generate function generic by making it a template, parameterized by the output iterator type. By doing
so, it can put the generated data into any STL conforming output iterator.

Semantic Actions

In the previous section we mentioned a very important difference between parsers and generators. While parsers may be used without
'producing' any data, generators always need data to generate the output from. We mentioned one way of passing data to the gener-
ator by supplying it as a parameter to one of the main API functions (for instance generate() or generate_delimited()). But
sometimes this is not possible or not desireable.

Very much like for Spirit.Qi we have semantic actions in Spirit.Karma as well. Semantic actions may be attached to any point in
the grammar specification. These actions are C++ functions or function objects that are called whenever a part of the generator is
about to be invoked. Say you have a generator G, and a C++ function F, you can make the generator call F just before it gets invoked
by attaching F:

G[F]

The expression above links F to the generator, G.

Semantic actions in Spirit.Qi are invoked after a parser successfully matches its input and the matched value is passed into the se-
mantic action. In Spirit.Karma the opposite happens. Semantic actions are called before its associated generator is invoked. They
may provide the data required by the generator.

The function/function object signature depends on the type of the generator to which it is attached. The generator double_ expects
the number to generate. Thus, if we were to attach a function F to double_, we need F to be declared as:

void F(double& n);

where the function is expected to initialize the parameter n with the value to generate.

173

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Important

Generally, and more formally, the semantic action F attached to a generator G needs to take a reference to the gen-
erator's attribute type as its first parameter. For more information about generator attributes please see the section
Generator Attributes.

In the example above the function F takes a double& as its first parameter as the attribute of the double_ generator
happens to be a double.

There are actually 2 more arguments being passed (the generator context and a reference to a boolean 'pass' parameter). We don't
need these, for now, but we'll see more on these other arguments later. Spirit.Karma allows us to bind a single argument function,
like above. The other arguments are simply ignored.

To sum up, the possible signatures for semantic actions are:

void f(Attrib&);
void f(Attrib&, Context&);
void f(Attrib&, Context&, bool&);

Examples of Semantic Actions

In the following example we present various ways to attach semantic actions:

• Using a plain function pointer

• Using a simple function object

• Using Boost.Bind with a plain function

• Using Boost.Bind with a member function

• Using Boost.Lambda

Let's assume we have:

174

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/bind/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/bind/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/lambda/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace client
{

namespace karma = boost::spirit::karma;

// A plain function
void read_function(int& i)
{

 i = 42;
}

// A member function
struct reader
{

void print(int& i) const
{

 i = 42;
}

};

// A function object
struct read_action
{

void operator()(int& i, unused_type, unused_type) const
{

 i = 42;
}

};
}

Take note that with function objects, we need to have an operator() with 3 arguments. Since we don't care about the other two,
we can use unused_type for these. We'll see more of unused_type elsewhere. Get used to it. unused_type is a Spirit supplied
support class. Most of the time it stands for 'I don't care, just use the appropriate default'.

All following examples generate outputs of the form:

"{integer}"

An integer inside the curly braces.

The first example shows how to attach a plain function:

generate(outiter, '{' << int_[&read_function] << '}');

What's new? Well int_ is the sibbling of double_. I'm sure you can guess what this generator does and what type of attribute it
expects.

The next example shows how to attach a simple function object:

generate(outiter, '{' << int_[read_action()] << '}');

We can use Boost.Bind to 'bind' member functions:

reader r;
generate(outiter, '{' << int_[boost::bind(&reader::print, &r, _1)] << '}');

Likewise, we can also use Boost.Bind to 'bind' plain functions:

175

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/bind/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/bind/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

generate(outiter, '{' << int_[boost::bind(&read_function, _1)] << '}');

And last but not least, we can also use Boost.Lambda:

std::stringstream strm("42");
generate(outiter, '{' << int_[strm >> lambda::_1] << '}');

There are more ways to bind semantic action functions, but the examples above are the most common. Attaching semantic actions
is the first hurdle one has to tackle when getting started with generating with Spirit. If you didn't do so yet, it is probably a good idea
to familiarize yourself with the tools behind it such as Boost.Bind and Boost.Lambda.

The examples above can be found here: actions.cpp

Phoenix

Phoenix, a companion library bundled with Spirit, is specifically suited for binding semantic actions. It is like Boost.Lambda on
steroids, with special custom features that make it easy to integrate semantic actions with Spirit. If your requirements go beyond
simple to moderate generation, I suggest you use this library. Examples presented henceforth shall be using the Phoenix library ex-
clusively.

Important

There are different ways to write semantic actions for Spirit.Karma: using plain functions, Boost.Bind, Boost.Lambda,
or Phoenix. The latter three allow you to use special placeholders to control parameter placement (_1, _2, etc.).
Each of those libraries has it's own implementation of the placeholders, all in different namespaces. You have to
make sure not to mix placeholders with a library they don't belong to and not to use different libraries while writing
a semantic action.

Generally, for Boost.Bind, use ::_1, ::_2, etc. (yes, these placeholders are defined in the globl namespace).

For Boost.Lambda use the placeholders defined in the namespace boost::lambda.

For semantic actions written using Phoenix use the placeholders defined in the namespace boost::spirit. Please
note that all existing placeholders for your convenience are also available from the namespace boost::spir-
it::karma.

Complex - A first more complex generator

In this section we will develop a generator for complex numbers, allowing to represent a std::complex either as (real, imag)
(where real and imag are the real and imaginary parts of the complex number) or as a simple real if the imaginary part happens
to be equal to zero. This example will highlight the power of Spirit.Karma allowing to combine compile time definition of formatting
rules with runtime based decisions which of the rules to apply. Also this time, we're using Boost.Phoenix to do the semantic actions.

Our goal is to allow for two different output formats to be applied depending on whether the imaginary part of the complex number
is zero or not. Let's write both as a set of alternatives:

'(' << double_ << ", " << double_ << ')'
| double_

where the first alternative should be used for numbers having a non-zero imaginary part, while the second is for real numbers. Gen-
erally, alternatives are tried in the sequence of their definition as long until one of the expressions (as delimited by '|') succeeds.
If no generator expression succeeds the whole alternative fails.

If we left this formatting grammar as is our generator would always choose the first alternative. We need to add some additional
rules allowing to make the first alternative fail. So, if the first alternative fails the second one will be chosen instead. The decision
about whether to choose the first alternative has to be made at runtime as only then we actually know the value of the imaginary part

176

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/lambda/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/bind/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/lambda/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/karma/actions.cpp
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/lambda/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/bind/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/lambda/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/bind/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/lambda/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

of the complex number. Spirit.Karma provides us with with a primitive generator eps(), which is usable as a semantic predicate.
It has the property to 'succeed' generating only if its argument is true (while it never generates any output on its own).

double imag = ...; // imaginary part

 eps(imag != 0) << '(' << double_ << ", " << double_ << ')'
| double_

If one of the generator elements of a sequence fails the whole sequence will fail. This is exactly what we need, forcing the second
alternative to be chosen for complex numbers with imaginary parts equal to zero.

Now on to the full example, this time with the proper semantic actions (the complete cpp file for this example can be found here:
complex_number.cpp).

We will use the std::complex type for this and all subsequent related examples. And here you can see the full code of the gener-
ator allowing to output a complex number either as a pair of numbers (if the imaginary part is non-zero) or as a single number (if
the complex is a real number):

template <typename OutputIterator>
bool generate_complex(OutputIterator sink, std::complex<double> const& c)
{

using boost::spirit::karma::eps;
using boost::spirit::karma::double_;
using boost::spirit::karma::_1;
using boost::spirit::karma::generate;

return generate(sink,
// Begin grammar
(

 eps(c.imag() != 0) <<
'(' << double_[_1 = c.real()] << ", " << double_[_1 = c.imag()] << ')'

| double_[_1 = c.real()]
)
// End grammar

);
}

The double_ generators have this semantic action attached:

_1 = n

which passes n to the first element of the generator the semantic action is attached to. Remember, semantic actions in Spirit.Karma
are called before the corresponding generator is invoked and they are expected to provide the generator with the data to be used. The
semantic action above assigns the value to be generated (n) to the generator (actually, the attribute of double_). _1 is a Phoenix
placeholder referring to the attribute of the generator the semantic action is attached to. If you need more information about semantic
actions, you may want to read about them in this section: Semantic Actions.

These semantic actions are easy to understand but have the unexpected side effect of being slightly less efficient than it could be. In
addition they tend to make the formatting grammar less readable. We will see in one of the next sections how it is possible to use
other, built-in features of Spirit.Karma to get rid of the semantic actions altogether. When writing your grammars in Spirit you should
always try to avoid semantic actions which is often possible. Semantic actions are really powerful tools but grammars tend to be
more efficient and readable without them.

Complex - Made easier

In the previous section we showed how to format a complex number (i.e. a pair of doubles). In this section we will build on this example
with the goal to avoid using semantic actions in the format specification. Let's have a look at the resulting code first, trying to understand
it afterwards (the full source file for this example can be found here: complex_number_easier.cpp):

177

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/karma/complex_number.cpp
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/karma/complex_number_easier.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename OutputIterator>
bool generate_complex(OutputIterator sink, std::complex<double> const& c)
{

using boost::spirit::karma::double_;
using boost::spirit::karma::omit;
using boost::spirit::karma::generate;

return generate(sink,

// Begin grammar
(

!double_(0.0) << '(' << double_ << ", " << double_ << ')'
| omit[double_] << double_ << omit[double_]
),
// End grammar

 c.imag(), c.real(), c.imag() // Data to output
);

}

Let's cover some basic library features first.

Making Numeric Generators Fail

All Numeric Generators (such as double_, et.al.) take the value to emit from an attached attribute.

double d = 1.5;
generate(out, double_, d); // will emit '1.5' (without the quotes)

Alternatively, they may be initialized from a literal value. For instance, to emit a constant 1.5 you may write:

generate(out, double_(1.5)); // will emit '1.5' as well (without the quotes)

The difference to a simple 1.5 or lit(1.5) is that the double_(1.5) consumes an attribute if one is available. Additionally, it
compares its immediate value to the value of the supplied attribute, and fails if those are not equal.

double d = 1.5;
generate(out, double_(1.5), d); // will emit '1.5' as long as d == 1.5

This feature, namely to succeed generating only if the attribute matches the immediate value, enables numeric generators to be used
to dynamically control the way output is generated.

Note

Quite a few generators will fail if their immediate value is not equal to the supplied attribute. Among those are all
Character Generators and all String Generators. Generally, all generators having a sibling created by a variant of
lit() belong into this category.

Predicates - The Conditionals for Output Generators

In addition to the eps generator mentioned earlier Spirit.Karma provides two special operators enabling dynamic flow control: the
And predicate (unary &) and the Not predicate (unary !). The main property of both predicates is to discard all output emitted by the
generator they are attached to. This is equivalent to the behaviour of predicates used for parsing. There the predicates do not consume
any input allowing to look ahead in the input stream. In Karma, the and predicate succeeds as long as its associated generator suceeds,
while the not predicate succeeds only if its associated generator fails.

178

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

The generator predicates in Spirit.Karma consume an attribute, if available. This makes them behave differently
from predicates in Spirit.Qi, where they do not expose any attribute. This is because predicates allow to make decisions
based on data available only at runtime. While in Spirit.Qi during parsing the decision is made based on looking
ahead a few more input tokens, in Spirit.Karma the criteria has to be supplied by the user. The simplest way to do
this is by providing an attribute.

As an example, the following generator succeeds generating

double d = 1.0;
BOOST_ASSERT(generate(out, &double_(1.0), d)); // succeeds as d == 1.0

while this one will fail:

double d = 1.0;
BOOST_ASSERT(!generate(out, !double_(1.0), d)); // fails as d == 1.0

Neither of these will emit any output. The predicates discard everything emitted by the generators they are applied to.

Ignoring Supplied Attributes

Sometimes it is desirable to 'skip' (i.e. ignore) a provided attribute. This happens for instance in alternative generators, where some
of the alternatives need to extract only part of the overall attribute passed to the alternative generator. Spirit.Karma has a special
pseudo generator for that: the directive omit[]. This directive consumes an attribute of the type defined by its embedded generator
but it does not emit any output.

Note

The Spirit.Karma omit directive does the 'opposite' of the directive of the same name in Spirit.Qi. While the omit
in Spirit.Qi consumes input without exposing an attribute, its Spirit.Karma counterpart consumes an attribute without
emitting any output.

Putting everything together

Very similar to our first example ealier we use two alternatives to allow for the two different output formats depending on whether
the imaginery part of the complex number is equal to zero or not. The first alternative is executed if the imaginary part is not zero,
the second alternative otherwise. This time we make the decision during runtime using the Not predicate (unary !) combined with
the feature of many Karma primitive generators to fail under certain conditions. Here is the first alternative again for your reference:

!double_(0.0) << '(' << double_ << ", " << double_ << ')'

The generator !double_(0.0) does several things. First, because of the Not predicate (unary !), it succeeds only if the double_(0.0)
generator fails, making the whole first alternative fail otherwise. Second, the double_(0.0) generator succeeds only if the value
of its attribute is equal to its immediate parameter (i.e. in this case 0.0). And third, the not predicate does not emit any output (re-
gardless whether it succeeds or fails), discarding any possibly emitted output from the double_(0.0).

As we pass the imaginery part of the complex number as the attribute value for the !double_(0.0), the overall first alternative
will be chosen only if it is not equal to zero (the !double_(0.0) does not fail). That is exactly what we need!

Now, the second alternative has to emit the real part of the complex number only. In order to simplify the overall grammar we strive
to unify the attribute types of all alternatives. As the attribute type exposed by the first alternative is tuple<double, double,
double>, we need to skip the first and last element of the attribute (remember, we pass the real part as the second attribute element).
We achieve this by using the omit[] directive:

179

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

omit[double_] << double_ << omit[double_]

The overall attribute of this expression is tuple<double, double, double>, but the omit[] 'eats up' the first and the last element.
The output emitted by this expression consist of a single generated double representing the second element of the tuple, i.e. the real
part of our complex number.

Important

Generally, it is preferrable to use generator constructs not requiring semantic actions. The reason is that semantic
actions often use constructs like: double_[_1 = c.real()]. But this assignment is a real one! The data is in fact
copied to the attribute value of the generator the action is attached to. On the other hand, grammars without any
semantic actions usually don't have to copy the attributes, making them more efficient.

Number List - Printing Numbers From a std::vector

Using the List Operator

The C++ Standard library lacks an important feature, namely the support for any formatted output of containers. Sure, it's fairly easy
to write a custom routine to output a specific container, but doing so over and over again is tedious at best. In this section we will
demonstrate some more of the capabilities of Spirit.Karma for generating output from arbitrary STL containers. We will build on
the example presented in an earlier section (see Warming Up).

The full source code of the example shown in this section can be found here: num_list2.cpp.

This time we take advantage of Karma's List (%) operator. The semantics of the list operator are fully equivalent to the semantics of
the sequence we used before. The generator expression

double_ << *(',' << double_)

is semantically equivalent to the generator expression

double_ % ','

simplifying the overall code. The list operator's attribute is compatible with any STL container as well. For a change we use a
std::vector<double> instead of the std::list<double> we used before. Additionally, the routine generate_numbers takes
the container as a template paramter, so it will now work with any STL container holding double numbers.

180

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/karma/num_list2.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename OutputIterator, typename Container>
bool generate_numbers(OutputIterator& sink, Container const& v)
{

using boost::spirit::karma::double_;
using boost::spirit::karma::generate_delimited;
using boost::spirit::ascii::space;

bool r = generate_delimited(
 sink, // destination: output iterator
 double_ % ',', // the generator
 space, // the delimiter-generator
 v // the data to output

);
return r;

}

Note

Despite the container being a template parameter, the Spirit.Karma formatting expression (double_ % ',') does
not depend on the actual type of the passed container. The only precondition to be met here is that the elements
stored in the container have to be convertible to double.

Generate Output from Arbitrary Data

The output routine developed above is still not generically usable for all types of STL containers and for arbitrary elements stored
in them. In order to be usable the items stored in the container still need to be convertible to a double. Fortunately Spirit.Karma is
capable to output arbitrary data types while using the same format description expression. It implements the stream generators
which are able to consume any attribute type as long as a matching standard streaming operator is defined. I.e. for any attribute type
Attrib a function:

std::ostream& operator<< (std::ostream&, Attrib const&);

needs to be available. The stream generator will use the standard streaming operator to generate the output.

The following example modifies the code shown above to utilize the stream operator, which makes it compatible with almost any
data type. We implement a custom data type complex to demonstrate this. The example shows how it is possible to integrate this
(or any other) custom data type into the Spirit.Karma generator framework.

This is the custom data structure together with the required standard streaming operator:

181

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// a simple complex number representation z = a + bi
struct complex
{
 complex (double a, double b = 0.0) : a(a), b(b) {}

double a;
double b;

};

// the streaming operator for the type complex
std::ostream&
operator<< (std::ostream& os, complex const& z)
{
 os << "{" << z.a << "," << z.b << "}";

return os;
}

And this is the actual call to generate the output from a vector of those. This time we interleave the generated output with newline
breaks (see eol), putting each complex number onto a separate line:

template <typename OutputIterator, typename Container>
bool generate_numbers(OutputIterator& sink, Container const& v)
{

using boost::spirit::karma::stream;
using boost::spirit::karma::generate;
using boost::spirit::karma::eol;

bool r = generate(
 sink, // destination: output iterator
 stream % eol, // the generator
 v // the data to output

);
return r;

}

The code shown is fully generic and can be used with any STL container as long as the data items stored in that container implement
the standard streaming operator.

The full source code of the example presented in this section can be found here: num_list3.cpp.

Matrix of Numbers - Printing Numbers From a Matrix

In this section we will discuss the possibilities of Spirit.Karma when it comes to generating output from more complex - but still
regular - data structures. For simplicity we will use a std::vector<std::vector<int> > as a poor man's matrix representation.
But even if the data structure seems to be very simple, the presented principles are applicable to more complex, or custom data
structures as well. The full source code of the example discussed in this section can be found here: num_matrix.cpp.

Quick Reference
This quick reference section is provided for convenience. You can use this section as sort of a "cheat-sheet" on the most commonly
used Karma components. It is not intended to be complete, but should give you an easy way to recall a particular component without
having to dig up on pages upon pages of reference documentation.

Common Notation

Notation

G Generator type

182

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/karma/num_list3.cpp
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/karma/num_matrix.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

g, a, b, c, d Generator objects

A, B, C, D Attribute types of generators a, b, c, and d

I The iterator type used for generation

Unused An unused_type

Context The enclosing rule's Context type

attrib An attribute value

Attrib An attribute type

b A boolean expression

B A type to be interpreted in boolean expressions

fg A (lazy generator) function with signature G(Unused, Context)

fa A (semantic action) function with signature void(Attrib&, Context, bool&). The third
parameter is a boolean flag that can be set to false to force the generator to fail. Both Context
and the boolean flag are optional.

outiter An output iterator to receive the generated output

Ch Character-class specific character type (See Character Class Types)

ch, ch2 Character-class specific character (See Character Class Types)

charset Character-set specifier string (example: "a-z0-9")

str Character-class specific string (See Character Class Types)

Str Attribute of str: std::basic_string<T> where T is the underlying character type of str

num Numeric literal, any integer or real number type

Num Attribute of num: any integer or real number type

tuple<> Used as a placeholder for a fusion sequence

vector<> Used as a placeholder for an STL container

variant<> Used as a placeholder for a boost::variant

optional<> Used as a placeholder for a boost::optional

Karma Generators

Character Generators

See here for more information about Character Generators.

183

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionAttributeExpression

Generate chUnusedch

Generate chUnusedlit(ch)

Generate character supplied as the attributeChchar_

Generate ch, if an attribute is supplied it must matchChchar_(ch)

Generate a single char string literal, c, if an attribute is supplied it must matchChchar_("c")

Generate the character supplied as the attribute, if it belongs to the character range from ch
to ch2

Chchar_(ch, ch2)

Generate the character supplied as the attribute, if it belongs to the character set charsetChchar_(charset)

Generate the character supplied as the attribute if it satisfies the concept of std::isalnum
in the character set defined by NS

Chalnum

Generate the character supplied as the attribute if it satisfies the concept of std::isalpha
in the character set defined by NS

Chalpha

Generate the character supplied as the attribute if it satisfies the concept of std::isblank
in the character set defined by NS

Chblank

Generate the character supplied as the attribute if it satisfies the concept of std::iscntrl
in the character set defined by NS

Chcntrl

Generate the character supplied as the attribute if it satisfies the concept of std::isdigit
in the character set defined by NS

Chdigit

Generate the character supplied as the attribute if it satisfies the concept of std::isgraph
in the character set defined by NS

Chgraph

Generate the character supplied as the attribute if it satisfies the concept of std::isprint
in the character set defined by NS

Chprint

Generate the character supplied as the attribute if it satisfies the concept of std::ispunct
in the character set defined by NS

Chpunct

Generate the character supplied as the attribute if it satisfies the concept of std::isspace,
or a single space character in the character set defined by NS

Chspace

Generate the character supplied as the attribute if it satisfies the concept of std::isxdigit
in the character set defined by NS

Chxdigit

Generate the character supplied as the attribute if it satisfies the concept of std::islower
in the character set defined by NS

Chlower

Generate the character supplied as the attribute if it satisfies the concept of std::isupper
in the character set defined by NS

Chupper

String Generators

See here for more information about String Generators.

184

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionAttributeExpression

Generate strUnusedstr

Generate strUnusedlit(str)

Generate string supplied as the attributeStrstring

Generate str, if an attribute is supplied it must matchStrstring(str)

Declare a symbol table, sym. Attr is the The type of the original attribute to be used as
the key into the symbol generator. T is the data type associated with each key.

Attrsymbols<Attr, T>

Add symbols into a symbol table, sym. val1 and val2 are optional data of type T, the
data type associated with each key.

N/A
sym.add

(at↵
tr1, val1)

(at↵
tr2, val2)
 ↵
 /*...more...*/
;

Emits entries in the symbol table, sym. If attribute is found in the symbol table, the cor-
responding value is emitted. If sym does not store values, the original attribute is emitted.

Tsym

Real Number Generators

See here for more information about Numeric Generators.

185

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionAttributeExpression

Generate numUnusedlit(num)

Generate a real number from a floatfloatfloat_

Generate num as a real number from a float, if an attribute is supplied it must matchfloatfloat_(num)

Generate a real number from a doubledoubledouble_

Generate a num as a real number from a double, if an attribute is supplied it must
match

doubledouble_(num)

Generate a real number from a long doublelong doublelong_double

Generate num as a real number from a long double, if an attribute is supplied it
must match

long doublelong_double(num)

Generate a real number Num using the supplied real number formatting policiesNum
real_generator<

 ↵
 Num, Policies

>()

Generate real number num as a Num using the supplied real number formatting policies,
if an attribute is supplied it must match

Num
real_generator<

 ↵
 Num, Policies

>()(num)

186

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Integer Generators

DescriptionAttributeExpression

Generate numUnusedlit(num)

Generate a short integershortshort_

Generate num as a short integer, if an attribute is supplied it must matchshortshort_(num)

Generate an intintint_

Generate num as an int, if an attribute is supplied it must matchintint_(num)

Generate a long integerlonglong_

Generate num as long integer, if an attribute is supplied it must matchlonglong_(num)

Generate a long longlong longlong_long

Generate num as a long long, if an attribute is supplied it must matchlong longlong_long(num)

Generate a NumNum
int_generator<

 ↵
 Num, Radix, force_sign

>()

Generate a num as a Num, if an attribute is supplied it must matchNum
int_generator<

 ↵
 Num, Radix, force_sign

>()(num)

187

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Unsigned Integer Generators

DescriptionAttributeExpression

Generate numUnusedlit(num)

Generate an unsigned short integerunsigned shortushort_

Generate num as an unsigned short integer, if an attribute is supplied it must
match

unsigned shortushort_(num)

Generate an unsigned intunsigned intuint_

Generate num as an unsigned int, if an attribute is supplied it must matchunsigned intuint_(num)

Generate an unsigned long integerunsigned longulong_

Generate num as an unsigned long integer, if an attribute is supplied it must
match

unsigned longulong_(num)

Generate an unsigned long longunsigned long longulong_long

Generate num as an unsigned long long, if an attribute is supplied it must
match

unsigned long longulong_long(num)

Generate a binary integer from an unsigned intunsigned intbin

Generate an octal integer from an unsigned intunsigned intoct

Generate a hexadecimal integer from an unsigned intunsigned inthex

Generate an unsigned NumNum
uint_generat↵
or<

 Num, Radix

>()

Generate an unsigned num as a Num, if an attribute is supplied it must matchNum
uint_generat↵
or<

 Num, Radix

>()(num)

188

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boolean Generators

DescriptionAttributeExpression

Generate numUnusedlit(num)

Generate a booleanboolbool_

Generate b as a boolean, if an attribute is supplied it must matchboolbool_(b)

Generate a boolean of type BB
bool_generat↵
or<

 ↵
 B, Policies

>()

Generate a boolean b as a B, if an attribute is supplied it must matchB
bool_generat↵
or<

 ↵
 B, Policies

>()(b)

Stream Generators

See here for more information about Stream Generators.

189

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionAttributeExpression

Generate narrow character (char) based output using the matching streaming operat-
or<<()

hold_anystream

Generate narrow character (char) based output from the immediate argument s using
the matching streaming operator<<()

Unusedstream(s)

Generate wide character (wchar_t) based output using the matching streaming operat-
or<<()

hold_anywstream

Generate wide character (wchar_t) based output from the immediate argument s using
the matching streaming operator<<()

Unusedwstream(s)

Generate output based on the given character type (Char) using the matching streaming
operator<<()

hold_any
stream_generat↵
or<

 Char

>()

Generate output based on the given character type Char from the immediate argument
s using the matching streaming operator<<()

Unused
stream_generat↵
or<

 Char

>()(s)

Binary Generators

See here for more information about Binary Generators.

DescriptionAttributeExpression

Generate an 8 bit binary8 bits native endianbyte_

Generate a 16 bit binary in native endian representation16 bits native endianword

Generate a 16 bit binary in big endian representation16 bits big endianbig_word

Generate a 16 bit binary in little endian representation16 bits little endianlittle_word

Generate a 32 bit binary in native endian representation32 bits native endiandword

Generate a 32 bit binary in big endian representation32 bits big endianbig_dword

Generate a 32 bit binary in little endian representation32 bits little endianlittle_dword

Generate a 64 bit binary in native endian representation64 bits native endianqword

Generate a 64 bit binary in big endian representation64 bits big endianbig_qword

Generate a 64 bit binary in little endian representation64 bits little endianlittle_qword

Generate additional null bytes allowing to align generated output with memory ad-
dresses divisible by num.

Unusedpad(num)

190

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Auxiliary Generators

See here for more information about Auxiliary Generators.

DescriptionAttributeExpression

Invoke a while supplying an attribute of type Exposed.Exposedattr_cast<Exposed>(a)

Generate the end of line (\n)Unusedeol

Generate an empty stringUnusedeps

If b is true, generate an empty stringUnusedeps(b)

Invoke fg at generation time, returning a generator g which
is then called to generate.

Attribute of G where G is the return
type of fg

lazy(fg)

Equivalent to lazy(fg)see lazy(fg) abovefg

Auto Generators

See here for more information about Auto Generators.

DescriptionAttributeExpression

Generate output using a generator created from the supplied attribute type using the create_gen-
eratorAPI function.

hold_anyauto_

Generator Operators

See here for more information about Generator Operators.

DescriptionAttributeExpression

Not predicate. Ensure that a does not succeed generating, but don't create any outputA!a

And predicate. Ensure that a does succeed generating, but don't create any outputA&a

Optional. Generate a zero or one timeoptional<A>-a

Kleene. Generate a zero or more timesvector<A>*a

Plus. Generate a one or more timesvector<A>+a

Alternative. Generate a or bvariant<A, B>a | b

Sequence. Generate a followed by btuple<A, B>a << b

List. Generate a delimited b one or more timesvector<A>a % b

For more information about the attribute propagation rules implemented by the compound generators please see
Generator Compound Attribute Rules.

Generator Directives

See here for more information about Generator Directives.

191

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionAttributeExpression

Generate a as lower caseAlower[a]

Generate a as upper caseAupper[a]

Generate a left aligned in column of width BOOST_KARMA_DE-

FAULT_FIELD_LENGTH

Aleft_align[a]

Generate a left aligned in column of width numAleft_align(num)[a]

Generate a left aligned in column of width BOOST_KARMA_DE-

FAULT_FIELD_LENGTH while using g to generate the necesssary padding
Aleft_align(g)[a]

Generate a left aligned in column of width num while using g to generate the
necesssary padding

Aleft_align(num, g)[a]

Generate a centered in column of width BOOST_KARMA_DE-

FAULT_FIELD_LENGTH

Acenter[a]

Generate a centered in column of width numAcenter(num)[a]

Generate a centered in column of width BOOST_KARMA_DE-

FAULT_FIELD_LENGTH while using g to generate the necesssary padding
Acenter(g)[a]

Generate a centered in column of width num while using g to generate the ne-
cesssary padding

Acenter(num, g)[a]

Generate a right aligned in column of width BOOST_KARMA_DE-

FAULT_FIELD_LENGTH

Aright_align[a]

Generate a right aligned in column of width numAright_align(num)[a]

Generate a right aligned in column of width BOOST_KARMA_DE-

FAULT_FIELD_LENGTH while using g to generate the necesssary padding
Aright_align(g)[a]

Generate a right aligned in column of width num while using g to generate the
necesssary padding

Aright_align(num, g)[a]

Generate a truncated to column of width BOOST_KARMA_DEFAULT_FIELD_MAX-
WIDTH

Amaxwidth[a]

Generate a truncated to column of width numAmaxwidth(num)[a]

Repeat a zero or more timesvector<A>repeat[a]

Repeat a num timesvector<A>repeat(num)[a]

Repeat a num1 to num2 timesvector<A>repeat(num1, num2)[a]

Repeat a num or more timesvector<A>repeat(num, inf)[a]

Disable delimited generation for aAverbatim[a]

Reestablish the delimiter that got inhibited by verbatimAdelimit[a]

Use d as a delimiter for generating aAdelimit(d)[a]

192

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionAttributeExpression

Consume the attribute type of a without generating anythingAomit[a]

Temporarily intercept the output generated by a, flushing it only after a suc-
ceeded

Abuffer[a]

Generate a splitted into BOOST_KARMA_DEFAULT_COLUMNS number of columns
using karma::eol as column delimiter

Acolumns[a]

Generate a splitted into num number of columns using karma::eol as column
delimiter

Acolumns(num)[a]

Generate a splitted into BOOST_KARMA_DEFAULT_COLUMNS number of columns
using g as column delimiter

Acolumns(g)[a]

Generate a splitted into num number of columns using g as column delimiterAcolumns(num, g)[a]

Generator Semantic Actions

DescriptionAttributeExpression

Call semantic action fa before invoking gAttribute of gg[fa]

Compound Attribute Rules

Notation

The notation we use is of the form:

a: A, b: B, ... --> composite-expression: composite-attribute

a, b, etc. are the operands. A, B, etc. are the operand's attribute types. composite-expression is the expression involving the op-
erands and composite-attribute is the resulting attribute type of the composite expression.

For instance:

a: A, b: B --> (a << b): tuple<A, B>

which reads as: given, a and b are generators, and A is the type of the attribute of a, and B is the type of the attribute of b, then the
type of the attribute of a << b will be tuple<A, B>.

Important

In the attribute tables, we will use vector<A> and tuple<A, B...> as placeholders only. The notation of vec-
tor<A> stands for any STL container holding elements of type A and the notation tuple<A, B...> stands for any
Boost.Fusion sequence holding A, B, ... etc. elements. The notation of variant<A, B, ...> stands for a
Boost.Variant capable of holding A, B, ... etc. elements. Finally, Unused stands for unused_type.

193

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.sgi.com/tech/stl/
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/fusion/doc/html/index.html
http://www.boost.org/doc/html/variant.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Compound Generator Attribute Types

AttributeExpression

a: A, b: B --> (a << b): tuple<A, B>
a: A, b: Unused --> (a << b): A
a: Unused, b: B --> (a << b): B
a: Unused, b: Unused --> (a << b): Unused

a: A, b: A --> (a << b): vector<A>
a: vector<A>, b: A --> (a << b): vector<A>
a: A, b: vector<A> --> (a << b): vector<A>
a: vector<A>, b: vector<A> --> (a << b): vector<A>

Sequence (<<)

a: A, b: B --> (a | b): variant<A, B>
a: A, b: Unused --> (a | b): A
a: Unused, b: B --> (a | b): B
a: Unused, b: Unused --> (a | b): Unused
a: A, b: A --> (a | b): A

Alternative (|)

a: A --> *a: vector<A>
a: Unused --> *a: Unused

Kleene (unary *)

a: A --> +a: vector<A>
a: Unused --> +a: Unused

Plus (unary +)

a: A, b: B --> (a % b): vector<A>
a: Unused, b: B --> (a % b): Unused

List (%)

a: A --> repeat(...,...)[a]: vector<A>
a: Unused --> repeat(...,...)[a]: Unused

Repetition

a: A --> -a: optional<A>
a: Unused --> -a: Unused

Optional (unary -)

a: A --> &a: AAnd predicate (unary &)

a: A --> !a: ANot predicate (unary !)

Nonterminals

See here for more information about Nonterminals.

Notation

RT Synthesized attribute. The rule or grammar's return type.

194

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Arg1, Arg2, ArgN Inherited attributes. Zero or more arguments.

L1, L2, LN Zero or more local variables.

r, r2 Rules

g A grammar

p A generator expression

my_grammar A user defined grammar

Terminology

Signature RT(Arg1, Arg2, ... ,ArgN). The signature specifies the synthesized (return value) and inherited (arguments)
attributes.

Locals locals<L1, L2, ..., LN>. The local variables.

Delimiter The delimit-generator type

Template Arguments

Iterator The iterator type you will use for parsing.

A1, A2, A3 Can be one of 1) Signature 2) Locals 3) Delimiter.

195

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionExpression

Rule declaration. OutputIterator is required. A1, A2, A3 are op-
tional and can be specified in any order. name is an optional string that
gives the rule its name, useful for debugging and error handling.

rule<OutputIterator, A1, A2, A3> r(name);

Copy construct rule r from rule r2.rule<OutputIterator, A1, A2, A3> r(r2);

Assign rule r2 to r. boost::shared_ptr semantics.r = r2;

Return an alias of r. The alias is a generator that holds a reference to
r. Reference semantics.

r.alias()

Get a copy of r.r.copy()

Set the name of a ruler.name(name)

Get the name of a ruler.name()

Rule definitionr = g;

Auto-rule definition. The attribute of g should be compatible with the
synthesized attribute of r. When g is successful, its attribute is automat-
ically propagated to r's synthesized attribute.

r %= g;

Grammar definition. name is an optional string that gives the grammar
its name, useful for debugging.

template <typename OutputIterator>
struct my_grammar : grammar<OutputIter↵
ator, A1, A2, A3>
{
 my_grammar() : my_gram↵
mar::base_type(start, name)

{
// Rule definitions

 start = /* ... */;
}

 rule<OutputIterat↵
or, A1, A2, A3> start;

// more rule declarations...
};

Instantiate a grammarmy_grammar<OutputIterator> g

Set the name of a grammarg.name(name)

Get the name of a grammarg.name()

Semantic Actions

Semantic Actions may be attached to any generator as follows:

g[f]

where f is a function with the signatures:

196

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void f(Attrib&);
void f(Attrib&, Context&);
void f(Attrib&, Context&, bool&);

You can use Boost.Bind to bind member functions. For function objects, the allowed signatures are:

void operator()(Attrib&, unused_type, unused_type) const;
void operator()(Attrib&, Context&, unused_type) const;
void operator()(Attrib&, Context&, bool&) const;

The unused_type is used in the signatures above to signify 'don't care'.

For more information see Semantic Actions.

Phoenix

Boost.Phoenix makes it easier to attach semantic actions. You just inline your lambda expressions:

g[phoenix-lambda-expression]

Spirit.Karma provides some Boost.Phoenix placeholders to access important information from the Attrib and Context that are
otherwise fiddly to extract.

Spirit.Karma specific Phoenix placeholders

_1, _2, ... , _N Nth attribute of g

_val The enclosing rule's synthesized attribute.

_r1, _r2, ... , _rN The enclosing rule's Nth inherited attribute.

_a, _b, ... , _j The enclosing rule's local variables (_a refers to the first).

_pass Assign false to _pass to force a generator failure.

Important

All placeholders mentioned above are defined in the namespace boost::spirit and, for your convenience, are
available in the namespace boost::spirit::karma as well.

For more information see Semantic Actions.

Reference

Generator Concepts

Spirit.Karma generators fall into a couple of generalized concepts. The Generator is the most fundamental concept. All Spirit.Karma
generators are models of the Generator concept. PrimitiveGenerator, UnaryGenerator, BinaryGenerator, NaryGenerator, and
Nonterminal are all refinements of the Generator concept.

The following sections provide details on these concepts.

197

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/bind/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/community/generic_programming.html#concept
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Generator

Description

The Generator is the most fundamental concept. A Generator has a member function, generate, that accepts an OutputIterator
and returns bool as its result. The iterator receives the data being generated. The Generator's generate member function returns
true if the generator succeeds. Each Generator can represent a specific pattern or algorithm, or it can be a more complex generator
formed as a composition of other Generators.

Notation

g A Generator.

G A Generator type.

OutIter An OutputIterator type.

sink An OutputIterator instance.

Context The generator's Context type.

context The generator's Context, or unused.

delimit A delimiter Generator, or unused.

attrib A Compatible Attributes, or unused.

Valid Expressions

In the expressions below, the behavior of the generator, g, as well as how delimit and attrib are handled by g, are left unspecified
in the base Generator concept. These are specified in subsequent, more refined concepts and by the actual models therof.

For any Generator the following expressions must be valid:

Return typeSemanticsExpression

boolGenerate the output sequence by inserting the generated charac-
ters/tokens into sink. Use the delimit generator for delimiting.
Return true if successful, otherwise return false.

g.generate(sink, context, de↵
limit, attrib)

infoGet information about a Generator.g.what(context)

Type Expressions

DescriptionExpression

The Generator's attribute.G::template attribute<Con-

text>::type

Metafunction that evaluates to mpl::true_ if a certain type, G is a Generator,
mpl::false_ otherwise (See MPL Boolean Constant).

traits::is_generator<G>::type

An mpl::int_ (See MPL Integral Constant) holding a value from the
karma::generator_properties enumeration. The default value is generat-
or_properties::no_properties

G::properties

198

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/mpl/doc/refmanual/integral-constant.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/mpl/doc/refmanual/integral-constant.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Postcondition

Upon return from g.generate the following post conditions should hold:

• On successful generation, sink receives the generated characters/tokens sequence.

• No pre-delimits: delimit characters/tokens will not be emitted in front of any other output.

• The attribute attrib has not been modified.

Models

All generators in Spirit.Karma are models of the Generator concept.

PrimitiveGenerator

Description

PrimitiveGenerator is the most basic building block that the client uses to build more complex generators.

Refinement of

Generator

Post-delimit

Before exiting the generate member function, a PrimitiveGenerator is required to do a post-delimit. This will generate a single
delimiting character/token sequence. Only PrimitiveGenerator's are required to perform this post-delimit. This is typically carried
out through a call to karma::delimit_out:

karma::delimit_out(sink, delimit);

Type Expressions

DescriptionExpression

Metafunction that evaluates to mpl::true_ if a certain type, G, is a Primitive-
Generator, mpl::false_ otherwise (See MPL Boolean Constant).

traits::is_primitive_generat-

or<G>::type

Models

The following generators conform to this model:

• eol,

• eps,

• Numeric generators,

• Character generators.

FIXME Add more links to PrimitiveGenerator models here.

UnaryGenerator

Description

UnaryGenerator is a composite generator that has a single subject. The UnaryGenerator may change the behavior of its subject fol-
lowing the Delegate Design Pattern.

199

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/mpl/doc/refmanual/integral-constant.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Refinement of

Generator

Notation

g A UnaryGenerator.

G A UnaryGenerator type.

Valid Expressions

In addition to the requirements defined in Generator, for any UnaryGenerator the following must be met:

Return typeSemanticsExpression

GeneratorSubject generator.g.subject

Type Expressions

DescriptionExpression

The subject generator type.G::subject_type

Metafunction that evaluates to mpl::true_ if a certain type, G is a UnaryGen-
erator, mpl::false_ otherwise (See MPL Boolean Constant).

traits::is_unary_generator<G>::type

Invariants

For any UnaryGenerator, G, the following invariant always holds:

• traits::is_generator<G::subject_type>::type evaluates to mpl::true_

Models

The following generators conform to this model:

• Kleene Star (unary *) operator,

• Plus (unary +) operator,

• Optional (unary -) operator,

• And predicate (unary &) and Not predicate (unary !) operators,

• left_align, center, and right_align directives,

• repeat directive,

• verbatim directive,

• delimit directive,

• lower and upper directives,

• maxwidth directive,

• buffer directive,

• omit directive.

200

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/mpl/doc/refmanual/integral-constant.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

FIXME Add more links to models of UnaryGenerator concept

BinaryGenerator

Description

BinaryGenerator is a composite generator that has a two subjects, left and right. The BinaryGenerator allows its subjects to be
treated in the same way as a single instance of a Generator following the Composite Design Pattern.

Refinement of

Generator

Notation

g A BinaryGenerator.

G A BinaryGenerator type.

Valid Expressions

In addition to the requirements defined in Generator, for any BinaryGenerator the following must be met:

Return typeSemanticsExpression

GeneratorLeft generator.g.left

GeneratorRight generator.g.right

Type Expressions

DescriptionExpression

The left generator type.G::left_type

The right generator type.G::right_type

Metafunction that evaluates to mpl::true_ if a certain type, G is a Binary-
Generator, mpl::false_ otherwise (See MPL Boolean Constant).

traits::is_binary_generator<G>::type

Invariants

For any BinaryGenerator, G, the following invariants always hold:

• traits::is_generator<G::left_type>::type evaluates to mpl::true_

• traits::is_generator<G::right_type>::type evaluates to mpl::true_

Models

The following generators conform to this model:

• List (%).

FIXME Add more links to models of BinaryGenerator concept

201

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/mpl/doc/refmanual/integral-constant.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

NaryGenerator

Description

NaryGenerator is a composite generator that has one or more subjects. The NaryGenerator allows its subjects to be treated in the
same way as a single instance of a Generator following the Composite Design Pattern.

Refinement of

Generator

Notation

g A NaryGenerator.

G A NaryGenerator type.

Valid Expressions

In addition to the requirements defined in Generator, for any NaryGenerator the following must be met:

Return typeSemanticsExpression

A Boost.Fusion Sequence of Generator types.The tuple of elements.g.elements

Type Expressions

DescriptionExpression

Elements tuple type.g.elements_type

Metafunction that evaluates to mpl::true_ if a certain type, G is a NaryGen-
erator, mpl::false_ otherwise (See MPL Boolean Constant).

traits::is_nary_generator<G>::type

Invariants

For each element, E, in any NaryGenerator, G, the following invariant always holds:

• traits::is_generator<E>::type evaluates to mpl::true_

Models

The following generators conform to this model:

• Sequence (<<),

• Alternative (|).

FIXME Add more links to models of NaryGenerator concept

Nonterminal

Description

A Nonterminal is a symbol in a Parsing Expression Grammar production that represents a grammar fragment. Nonterminals may
self reference to specify recursion. This is one of the most important concepts and the reason behind the word "recursive" in recursive
descent generation.

202

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/fusion/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/mpl/doc/refmanual/integral-constant.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Refinement of

Generator

Signature

Rules can have both consumed and inherited attributes. The rule's Signature specifies both the consumed and inherited attributes.
The specification uses the function declarator syntax:

RT(A0, A1, A2, ..., AN)

where RT is the rule's consumed attribute and A0 ... AN are the rule's inherited attributes.

Attributes

The rule models a C++ function. The rule's consumed attribute is analogous to the function return value as it is the type -exposed-
by the rule. Its inherited attributes are analogous to function arguments. The inherited attributes (arguments) can be passed in just
like any Lazy Argument, e.g.:

r(expr) // Evaluate expr at parse time and pass the result to the Nonterminal r

_val

The boost::spirit::karma::_val placeholder can be used in Phoenix semantic actions anywhere in the Nonterminal's definition.
This Phoenix placeholder refers to the Nonterminal's (consumed) attribute. The _val placeholder acts like an immutable reference
to the Nonterminal's attribute.

_r1...r10

The boost::spirit::_r1...boost::spirit::r10 placeholders can be used in Phoenix semantic actions anywhere in the
Nonterminal's definition. These Phoenix placeholders refer to the Nonterminal's inherited attributes.

Locals

Nonterminals can have local variables that will be created on the stack at runtime. A locals descriptor added to the Nonterminal de-
claration will give the Nonterminal local variables:

template <typename T0, typename T1, typename T2, ..., typename TN>
struct locals;

where T0 ... TN are the types of local variables accessible in your Phoenix semantic actions using the placeholders:

• boost::spirit::_a

• boost::spirit::_b

• boost::spirit::_c

• boost::spirit::_d

• boost::spirit::_e

• boost::spirit::_f

• boost::spirit::_g

• boost::spirit::_h

• boost::spirit::_i

203

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• boost::spirit::_j

which correspond to the Nonterminal's local variables T0 ... T9.

Notation

x A Nonterminal

X A Nonterminal type

arg1, arg2, ..., argN Lazy Arguments that evaluate to each of the Nonterminal's inherited attributes.

Valid Expressions

In addition to the requirements defined in Generator, for any Nonterminal the following must be met:

Return typeSemanticsExpression

XIn a generator expression, invoke Nonterminal xx

XIn a generator expression, invoke Nonterminal x passing in inherited at-
tributes arg1...argN

x(arg1, arg2, ..., argN)

voidSet the name of a Nonterminalx.name(name)

std::stringGet the name of a Nonterminalx.name()

Type Expressions

DescriptionExpression

The Signature of X: An MPL Forward Sequence. The first element is the Nonterminal's consumed attribute
type and the rest are the inherited attribute types.

X::sig_type

The local variables of X: An MPL Forward Sequence.X::locals_type

Models

• rule

• grammar

Basics

Lazy Argument

Some generators (e.g. primitives and non-terminals) may take in additional attributes. Such generators take the form:

g(a1, a2,..., aN)

where g is a generator. Each of the arguments (a1 ... aN) can either be an immediate value, or a function, f, with signature:

T f(Unused, Context)

where T, the function's return value, is compatible with the argument type expected and Context is the generators's Context type
(The first argument is unused to make the Context the second argument. This is done for uniformity with Semantic Actions).

204

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/mpl/doc/refmanual/forward-sequence.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/mpl/doc/refmanual/forward-sequence.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Character Encoding Namespace

Some generators need to know which character set a char or wchar_t is operating on. For example, the alnum generator works
differently with ISO8859.1 and ASCII encodings. Where necessary, Spirit encodes (tags) the generator with the character set.

We have a namespace for each character set Spirit will be supporting. That includes ascii, iso8859_1, standard and stand-
ard_wide (and in the future, unicode). In each of the character encoding namespaces, we place tagged versions of generators such
as alnum, space etc.

Example:

using boost::spirit::ascii::space; // use the ASCII space generator

Namespaces:

• boost::spirit::ascii

• boost::spirit::iso8859_1

• boost::spirit::standard

• boost::spirit::standard_wide

For ease of use, the components in this namespaces are also brought into the karma sub-namespaces with the same names:

• boost::spirit::karma::ascii

• boost::spirit::karma::iso8859_1

• boost::spirit::karma::standard

• boost::spirit::karma::standard_wide

Examples

All sections in the reference present some real world examples. The examples use a common test harness to keep the example code
as minimal and direct to the point as possible. The test harness is presented below.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

The used output iterator:

typedef std::back_insert_iterator<std::string> output_iterator_type;

Our test functions:

This one tests the generators without attributes.

205

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename G>
void test_generator(char const* expected, G const& g)
{
 std::string s;
 std::back_insert_iterator<std::string> out(s);

if (boost::spirit::karma::generate(out, g) && s == expected)
 std::cout << "ok" << std::endl;

else
 std::cout << "fail" << std::endl;
}

These test the generators with one or more user supplied attributes.

template <typename G, typename T>
void test_generator_attr(char const* expected, G const& g, T const& attr)
{
 std::string s;
 std::back_insert_iterator<std::string> out(s);

if (boost::spirit::karma::generate(out, g, attr) && s == expected)
 std::cout << "ok" << std::endl;

else
 std::cout << "fail" << std::endl;
}

template <typename G, typename T1, typename T2>
void test_generator_attr(char const* expected, G const& g, T1 const& attr1,
 T2 const& attr2)
{
 std::string s;
 std::back_insert_iterator<std::string> out(s);

if (boost::spirit::karma::generate(out, g, attr1, attr2) && s == expected)
 std::cout << "ok" << std::endl;

else
 std::cout << "fail" << std::endl;
}

This tests the generators with one attribute and while using delimited output.

template <typename G, typename Delimiter, typename T>
void test_generator_attr_delim(char const* expected, G const& g, Delimiter const& d, T const& attr)
{
 std::string s;
 std::back_insert_iterator<std::string> out(s);

if (boost::spirit::karma::generate_delimited(out, g, d, attr) && s == expected)
 std::cout << "ok" << std::endl;

else
 std::cout << "fail" << std::endl;
}

The examples of the binary generators use one or more of the following tests.

206

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename G>
void test_binary_generator(char const* expected, std::size_t size, G const& g)
{
 std::string s;
 std::back_insert_iterator<std::string> out(s);

if (boost::spirit::karma::generate(out, g) && !std::memcmp(s.c_str(), expected, size))
 std::cout << "ok" << std::endl;

else
 std::cout << "fail" << std::endl;
}

template <typename G, typename T>
void test_binary_generator_attr(char const* expected, std::size_t size, G const& g, T const& attr)
{
 std::string s;
 std::back_insert_iterator<std::string> out(s);

if (boost::spirit::karma::generate(out, g, attr) && !std::memcmp(s.c_str(), expected, size))
 std::cout << "ok" << std::endl;

else
 std::cout << "fail" << std::endl;
}

Models

Predefined models include:

• any literal string, e.g. "Hello, World",

• a pointer/reference to a null-terminated array of characters

• a std::basic_string<Char>

The namespace boost::spirit::traits is open for users to provide their own specializations. The customization points imple-
mented by Spirit.Karma usable to customize the behavior of generators are described in the section Customization of Attribute
Handling.

Generator API

Iterator Based Generator API

Description

The library provides a couple of free functions to make generating a snap. These generator functions have two forms. The first form,
generate, concatenates the output generated by the involved components without inserting any output in between. The second
generate_delimited intersperses the output generated by the involved components using the given delimiter generator. Both
versions can take in attributes by (constant) reference that hold the attribute values to output.

Header

// forwards to <boost/spirit/home/karma/generate.hpp>
#include <boost/spirit/include/karma_generate.hpp>

For variadic attributes:

207

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// forwards to <boost/spirit/home/karma/generate_attr.hpp>
#include <boost/spirit/include/karma_generate_attr.hpp>

The variadic attributes version of the API allows one or more attributes to be passed into the generate functions. The functions
taking two or more attributes are usable when the generator expression is a Sequence (<<) only. In this case each of the attributes
passed have to match the corresponding part of the sequence.

For the API functions deducing the correct (matching) generator type from the supplied attribute type:

// forwards to <boost/spirit/home/karma/detail/generate_auto.hpp>
#include <boost/spirit/include/karma_generate_auto.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::karma::generate

boost::spirit::karma::generate_delimited

boost::spirit::karma::delimit_flag::predelimit

boost::spirit::karma::delimit_flag::dont_predelimit

208

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

namespace boost { namespace spirit { namespace karma
{

template <typename OutputIterator, typename Expr>
inline bool

 generate(
 OutputIterator& sink

, Expr const& expr);

template <typename OutputIterator, typename Expr
, typename Attr1, typename Attr2, ..., typename AttrN>

inline bool
 generate(
 OutputIterator& sink

, Expr const& expr
, Attr1 const& attr1, Attr2 const& attr2, ..., AttrN const& attrN);

template <typename OutputIterator, typename Expr, typename Delimiter>
inline bool

 generate_delimited(
 OutputIterator& sink

, Expr const& expr
, Delimiter const& delimiter
, BOOST_SCOPED_ENUM(delimit_flag) pre_delimit = delimit_flag::dont_predelimit);

template <typename OutputIterator, typename Expr, typename Delimiter
, typename Attr1, typename Attr2, ..., typename AttrN>

inline bool
 generate_delimited(
 OutputIterator& sink

, Expr const& expr
, Delimiter const& delimiter
, Attr1 const& attr1, Attr2 const& attr2, ..., AttrN const& attrN);

template <typename OutputIterator, typename Expr, typename Delimiter
, typename Attr1, typename Attr2, ..., typename AttrN>

inline bool
 generate_delimited(
 OutputIterator& sink

, Expr const& expr
, Delimiter const& delimiter
, BOOST_SCOPED_ENUM(delimit_flag) pre_delimit
, Attr1 const& attr1, Attr2 const& attr2, ..., AttrN const& attrN);

}}}

Spirit.Karma generator API functions based on the automatic creation of the matching generator type:

209

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace boost { namespace spirit { namespace karma
{

template <typename OutputIterator, typename Attr, typename Delimiter>
inline bool

 generate_delimited(
 OutputIterator& sink

, Attr const& attr
, Delimiter const& delimiter
, BOOST_SCOPED_ENUM(delimit_flag) pre_delimit = delimit_flag::dont_predelimit);

template <typename OutputIterator, typename Attr>
inline bool

 generate(
 OutputIterator& sink

, Attr const& attr);
}}}

All functions above return true if none of the involved generator components failed, and false otherwise. If during the process
of the output generation the underlying output stream reports an error, the return value will be false as well.

The maximum number of supported arguments is limited by the preprocessor constant SPIRIT_ARGUMENTS_LIMIT. This constant
defaults to the value defined by the preprocessor constant PHOENIX_LIMIT (which in turn defaults to 10).

Note

The variadic functions with two or more attributes internally combine (constant) references to all passed attributes
into a fusion::vector and forward this as a combined attribute to the corresponding function taking one attribute.

The generate_delimited functions not taking an explicit delimit_flag as one of their arguments don't invoke the passed de-
limiter before starting to generate output from the generator expression. This can be enabled by using the other version of that
function while passing delimit_flag::predelimit to the corresponding argument.

Template parameters

DescriptionParameter

OutputIterator receiving the generated output.OutputIterator

An expression that can be converted to a Karma generator.Expr

Generator used to delimit the output of the expression components.Delimiter

An attribute type utilized to create the corresponding generator type from.Attr

One or more attributes.Attr1, Attr2, ..., AttrN

Stream Based Generator API

Description

The library provides a couple of Standard IO Manipulators allowing to integrate Spirit.Karma output generation facilities with
Standard output streams. These generator manipulators have two forms. The first form, format, concatenates the output generated
by the involved components without inserting any output in between. The second, format_delimited, intersperses the output
generated by the involved components using the given delimiter generator. Both versions can take in attributes by (constant) reference
that hold the attribute values to output.

210

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.sgi.com/tech/stl/OutputIterator.html
http://www.cppreference.com/wiki/io/io_flags#manipulators
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Header

// forwards to <boost/spirit/home/karma/stream/format_manip.hpp>
#include <boost/spirit/include/karma_format.hpp>

For variadic attributes:

// forwards to <boost/spirit/home/karma/stream/format_manip_attr.hpp>
#include <boost/spirit/include/karma_format_attr.hpp>

The variadic attributes version of the API allows one or more attributes to be passed into the format manipulators. The manipulators
taking two or more attributes are usable when the generator expression is a Sequence (<<) only. In this case each of the attributes
passed have to match the corresponding part of the sequence.

For the API functions deducing the correct (matching) generator type from the supplied attribute type:

// forwards to <boost/spirit/home/karma/format_auto.hpp>
#include <boost/spirit/include/karma_format_auto.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::karma::format

boost::spirit::karma::format_delimited

boost::spirit::karma::delimit_flag::predelimit

boost::spirit::karma::delimit_flag::dont_predelimit

211

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

namespace boost { namespace spirit { namespace karma
{

template <typename Expr>
inline <unspecified>

 format(
 Expr const& xpr);

template <typename Expr
, typename Attr1, typename Attr2, ..., typename AttrN>

inline <unspecified>
 format(
 Expr const& xpr

, Attr1 const& attr1, Attr2 const& attr2, ..., AttrN const& attrN);

template <typename Expr, typename Delimiter>
inline <unspecified>

 format_delimited(
 Expr const& expr

, Delimiter const& d
, BOOST_SCOPED_ENUM(delimit_flag) pre_delimit = delimit_flag::dont_predelimit);

template <typename Expr, typename Delimiter
, typename Attr1, typename Attr2, ..., typename AttrN>

inline <unspecified>
 format_delimited(
 Expr const& expr

, Delimiter const& d
, Attr1 const& attr1, Attr2 const& attr2, ..., AttrN const& attrN);

template <typename Expr, typename Delimiter
, typename Attr1, typename Attr2, ..., typename AttrN>

inline <unspecified>
 format_delimited(
 Expr const& expr

, Delimiter const& d
, BOOST_SCOPED_ENUM(delimit_flag) pre_delimit
, Attr1 const& attr1, Attr2 const& attr2, ..., AttrN const& attrN);

}}}

Spirit.Karma generator API functions based on the automatic creation of the matching generator type:

namespace boost { namespace spirit { namespace karma
{

template <typename Attr, typename Delimiter>
inline <unspecified>

 format_delimited(
 Attr const& attr

, Delimiter const& d
, BOOST_SCOPED_ENUM(delimit_flag) pre_delimit = delimit_flag::dont_predelimit);

template <typename Attr>
inline <unspecified>

 format(
 Attr const& xpr);
}}}

All functions above return a standard IO stream manipulator instance (see Manipulators), which when streamed to an output stream
will result in generating the output as emitted by the embedded Spirit.Karma generator expression. Any error occuring during the
invocation of the Spirit.Karma generators will be reflected in the streams status flag (std::ios_base::failbit will be set).

212

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.cppreference.com/wiki/io/io_flags#manipulators
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The maximum number of supported arguments is limited by the preprocessor constant SPIRIT_ARGUMENTS_LIMIT. This constant
defaults to the value defined by the preprocessor constant PHOENIX_LIMIT (which in turn defaults to 10).

Note

The variadic manipulators with two or more attributes internally combine (constant) references to all passed attributes
into a fusion::vector and forward this as a combined attribute to the corresponding manipulator taking one at-
tribute.

The format_delimited manipulators not taking an explicit delimit_flag as one of their arguments don't invoke the passed
delimiter before starting to generate output from the generator expression. This can be enabled by using the other version of that
manipulator while passing delimit_flag::predelimit to the corresponding argument.

Template parameters

DescriptionParameter

An expression that can be converted to a Karma generator.Expr

Generator used to delimit the output of the expression components.Delimiter

An attribute type utilized to create the corresponding generator type from.Attr

One or more attributes.Attr1, Attr2, ..., AttrN

API for Automatic Generator Creation

Description

The library implements a special API returning a generator instance for a supplied attribute type. This function finds the best
matching generator type for the attribute based on a set of simple matching rules (as outlined in the table below) applied recursively
to the attribute type. The returned generator can be utilized to emit output for the provided attribute.

Header

// forwards to <boost/spirit/home/karma/auto.hpp>
#include <boost/spirit/include/karma_auto.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::karma::create_generator

boost::spirit::traits::create_generator_exists

213

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

namespace boost { namespace spirit { namespace karma
{

template <typename Attr>
inline <unspecified>

 create_generator();
}}}

The returned instance can be directly passed as the generator (or the delimiting generator) to any of the Spirit.Karma API functions.
Additionally it can be assigned to a rule as the rules right hand side expression. This function will return a valid generator type only
if the meta function traits::create_generator_exists returns mpl::true_. Otherwise it will fail compiling.

namespace boost { namespace spirit { namespace traits
{

template <typename Attr>
struct create_generator_exists;

}}}

The meta function evaluates to mpl::true_ if create_generator would return a valid generator for the given type Attr.

The following table outlines the mapping rules from the attribute type to the generator type. These rules are applied recursively to
create the generator type which can be used to generate output from the given attribute type.

Generator typeAttribute type

standard::char_, standard_wide::char_char, wchar_t

short_, int_, long_short, int, long

ushort_, uint_, ulong_unsigned short, unsigned int, unsigned long

float_, double_, long_doublefloat, double, long double

short_, int_, long_short, int, long

long_long, ulong_longlong long, unsigned long long

bool_bool

stringAny string (char const*, std::string, etc.)

Kleene Star (unary '*')Any (STL) container

Sequence operator ('<<')Any Fusion sequence

Optional operator (unary '-')boost::optional<>

Alternative operator ('|')boost::variant<>

Important

The mapping for the generators long_long and ulong_long are only available on platforms where the preprocessor
constant BOOST_HAS_LONG_LONG is defined (i.e. on platforms having native support for long long and unsigned
long long (64 bit) signed and unsigned integer types).

214

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Template parameters

DescriptionParameter

An attribute type utilized to create the corresponding generator type from.Attr

Action

Description

Semantic actions may be attached to any point in the grammar specification. They allow to call a function or function object in order
to provide the value to be output by the generator the semantic action is attached to. Semantic actions are associated with a generator
using the syntax g[], where g is an arbitrary generator expression.

Header

// forwards to <boost/spirit/home/karma/action.hpp>
#include <boost/spirit/include/karma_action.hpp>

Also, see Include Structure.

Model of

UnaryGenerator

Notation

a, g Instances of a generator, G

A Attribute type exposed by a generator, a

fa A (semantic action) function with signature void(Attrib&, Context&, bool&). The third parameter is
a boolean flag that can be set to false to force the generator to fail. Both Context and the boolean flag are
optional. For more information see below.

Attrib The attribute to be used to generate output from.

Context The type of the generator execution context. For more information see below.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryGenerator.

SemanticsExpression

Call semantic action, fa before invoking g. The function or function object fa is expected to provide the value
to generate output from to the generator g.

g[fa]

The possible signatures for functions to be used as semantic actions are:

215

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Attrib>
void fa(Attrib& attr);

template <typename Attrib, typename Context>
void fa(Attrib& attr, Context& context);

template <typename Attrib, typename Context>
void fa(Attrib& attr, Context& context, bool& pass);

The function or function object is expected to return the value to generate output from by assigning it to the first parameter, attr.
Here Attrib is the attribute type of the generator the semantic action is attached to.

The type Context is the type of the generator execution context. This type is unspecified and depends on the context the generator
is invoked in. The value context is used by semantic actions written using Phoenix to access various context dependent attributes
and values. For more information about Phoenix placeholder expressions usable in semantic actions see Nonterminal.

The third parameter, pass, can be used by the semantic action to force the associated generator to fail. If pass is set to false the
action generator will immediately return false as well, while not invoking g and not generating any output.

Attributes

AttributeExpression

a: A --> a[fa]: Aa[fa]

Complexity

The complexity of the action generator is defined by the complexity of the generator the semantic action is attached to and the
complexity of the function or function object used as the semantic action.

Important

Please note that the use of semantic actions in Spirit.Karma generally forces the library to create a copy of the attribute,
which might be a costly operation. Always consider using other means of associating a value with a particular
generator first.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

216

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

using boost::spirit::karma::int_;
using boost::spirit::karma::string;
using boost::spirit::karma::_1;
using boost::phoenix::ref;
using boost::phoenix::val;

Some examples:

int i = 42;
test_generator("42", int_[_1 = ref(i)]);
test_generator("abc", string[_1 = val("abc")]);

More examples for semantic actions can be found here: Examples of Semantic Actions.

Auto

Description

This module includes the description of the auto_ generator. This generator can be used to automatically create a generator based
on the supplied attribute type.

Header

// forwards to <boost/spirit/home/karma/auto.hpp>
#include <boost/spirit/include/karma_auto.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::auto_ // alias: boost::spirit::karma::auto_

Model of

PrimitiveGenerator

Notation

s A variable instance of any type for which a mapping to a generator type is defined (the meta function traits::create_gen-
erator_exists returns mpl::true_) or a Lazy Argument that evaluates to any type for which a mapping to a generator type
is defined (the meta function traits::create_generator_exists returns mpl::true_).

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveGenerator.

DescriptionExpression

Create a generator instance compatible with the supplied attribute type and use it for output generation. This
generator never fails (unless the underlying output stream reports an error).

auto_

Create a generator instance compatible with the supplied literal value. This generator never fails (unless the un-
derlying output stream reports an error).

auto_(s)

217

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Additional Requirements

The auto_ generators can be used to emit output for any data type for which a mapping to a generator type is defined (the meta
function traits::create_generator_exists returns mpl::true_). The following table outlines the predefined mapping rules
from the attribute type to the generator type. These rules are applied recursively to create the generator type which can be used to
generate output from the given attribute type.

Generator typeAttribute type

standard::char_, standard_wide::char_char, wchar_t

short_, int_, long_short, int, long

ushort_, uint_, ulong_unsigned short, unsigned int, unsigned long

float_, double_, long_doublefloat, double, long double

short_, int_, long_short, int, long

long_long, ulong_longlong long, unsigned long long

bool_bool

stringAny string (char const*, std::string, etc.)

Kleene Star (unary '*')Any (STL) container

Sequence operator ('<<')Any Fusion sequence

Optional operator (unary '-')boost::optional<>

Alternative operator ('|')boost::variant<>

It is possible to add support for any custom data type by implementing a specialization of the customization point create_gener-
ator. This customiyation can be used also to redefined anz of the predefined mappings.

Attributes

AttributeExpression

hold_any, attribute is mandatory (otherwise compilation will fail)auto_

unusedauto_(s)

Important

The attribute type hold_any exposed by some of the auto_ generators is semantically and syntactically equivalent
to the type implemented by Boost.Any. It has been added to Spirit as it has better a performance and a smaller
footprint if compared to Boost.Any.

218

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/any/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/any/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

In addition to their usual attribute of type Attrib all listed generators accept an instance of a boost::option-
al<Attrib> as well. If the boost::optional<> is initialized (holds a value) the generators behave as if their
attribute was an instance of Attrib and emit the value stored in the boost::optional<>. Otherwise the generators
will fail.

Complexity

[The complexity of the auto_ generator depends on the attribute type. Each attribute type results in a different generator type to be
instantiated which defines the overall complexity.]

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::auto_;

And a class definition used in the examples:

// a simple complex number representation z = a + bi
struct complex
{
 complex (double a, double b)

: a(a), b(b)
{}

double a;
double b;

};

The following construct is required to allow the complex data structure to be utilized as a Boost.Fusion sequence. This is required
as we will emit output for this data structure with a Spirit.Karma sequence: '{' << karma::double_ << ',' <<

karma::double_ << '}'.

BOOST_FUSION_ADAPT_STRUCT(
 complex,

(double, a)
(double, b)

)

219

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/fusion/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

We add a specialization for the create_generator customization point defining a custom output format for the complex type. Generally,
any specialization for create_generator is expected to return the proto expression to be used to generate output for the type the cus-
tomization point has been specialized for.

We need to utilize proto::deep_copy as the expression contains literals (the '{', ',', and '}') which normally get embedded
in the proto expression by reference only. The deep copy converts the proto tree to hold this by value. The deep copy operation can
be left out for simpler proto expressions (not containing references to temporaries). Alternatively you could use the
proto::make_expr facility to build the required proto expression.

namespace boost { namespace spirit { namespace traits
{

template <>
struct create_generator<complex>
{

typedef proto::result_of::deep_copy<
 BOOST_TYPEOF('{' << karma::double_ << ',' << karma::double_ << '}')

>::type type;

static type call()
{

return proto::deep_copy(
'{' << karma::double_ << ',' << karma::double_ << '}');

}
};

}}}

Some usage examples of auto_ generators:

Emit a simple string using the karma::string generator:

test_generator_attr("abc", auto_, "abc");
test_generator("abc", auto_("abc"));

Emit instances of the complex data type as defined above using the generator defined by the customization point for complex:

test_generator_attr("{1.2,2.4}", auto_, complex(1.2, 2.4));
test_generator("{1.2,2.4}", auto_(complex(1.2, 2.4)));

Auxiliary

This module includes different auxiliary generators not fitting into any of the other categories. It includes the attr_cast, eol, eps,
and lazy generators.

Module Header

// forwards to <boost/spirit/home/karma/auxiliary.hpp>
#include <boost/spirit/include/karma_auxiliary.hpp>

Also, see Include Structure.

Attribute Transformation Pseudo Generator (attr_cast)

Description

The attr_cast<Exposed, Transformed>() component invokes the embedded generator while supplying an attribute of type
Transformed. The supplied attribute gets created from the original attribute (of type Exposed) passed to this component using the
customization point transform_attribute.

220

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Header

// forwards to <boost/spirit/home/karma/auxiliary/attr_cast.hpp>
#include <boost/spirit/include/karma_attr_cast.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::attr_cast // alias: boost::spirit::karma::attr_cast

Synopsis

template <Exposed, Transformed>
<unspecified> attr_cast(<unspecified>);

Template parameters

DefaultDescriptionParameter

unused_typeThe type of the attribute supplied to the attr_cast.Exposed

unused_typeThe type of the attribute expected by the embedded generator g.Transformed

The attr_cast is a function template. It is possible to invoke it using the following schemes:

attr_cast(g)
attr_cast<Exposed>(g)
attr_cast<Exposed, Transformed>(g)

depending on which of the attribute types can be deduced properly if not explicitly specified.

Model of

UnaryGenerator

Notation

g A generator object.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryGenerator.

221

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

SemanticsExpression

Create a component invoking the generator g while passing an attribute of the type as normally
expected by g. The type of the supplied attribute will be transformed to the type g exposes as its
attribute type (by using the attribute customization point transform_attribute). This generator
does not fail unless g fails.

attr_cast(g)

Create a component invoking the generator g while passing an attribute of the type as normally
expected by g. The supplied attribute is expected to be of the type Exposed, it will be transformed
to the type g exposes as its attribute type (using the attribute customization point transform_at-
tribute). This generator does not fail unless g fails.

attr_cast<Exposed>(g)

Create a component invoking the generator g while passing an attribute of type Transformed.
The supplied attribute is expected to be of the type Exposed, it will be transformed to the type
Transformed (using the attribute customization point transform_attribute). This generator
does not fail unless g fails.

attr_cast<Exposed,

Transformed>(g)

Attributes

AttributeExpression

g: A --> attr_cast(g): Aattr_cast(g)

g: A --> attr_cast<Exposed>(g): Exposedattr_cast<Exposed>(g)

g: A --> attr_cast<Exposed, Transformed>(g): Exposedattr_cast<Exposed, Transformed>(g)

Complexity

The complexity of this component is fully defined by the complexity of the embedded generator g.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::int_;

The example references data structure int_data which needs a specialization of the customization point transform_attribute:

222

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// this is just a test structure we want to use in place of an int
struct int_data
{

int i;
};

// we provide a custom attribute transformation to allow its use as an int
namespace boost { namespace spirit { namespace traits
{

template <>
struct transform_attribute<int_data const, int>
{

typedef int type;
static int pre(int_data const& d) { return d.i; }

};
}}}

Now we use the attr_cast pseudo generator to invoke the attribute transformation:

int_data d = { 1 };
test_generator_attr("1", boost::spirit::karma::attr_cast(int_), d);

End of Line (eol)

Description

The eol component generates a single newline character. It is equivalent to lit('\n') or simply '\n' (please see the char_ gener-
ator module for more details).

Header

// forwards to <boost/spirit/home/karma/auxiliary/eol.hpp>
#include <boost/spirit/include/karma_eol.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::eol // alias: boost::spirit::karma::eol

Model of

PrimitiveGenerator

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveGenerator.

SemanticsExpression

Create a component generating a single end of line character in the output. This generator never fails (unless the
underlying output stream reports an error).

eol

223

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Attributes

AttributeExpression

unusedeol

Complexity

O(1)

The complexity is constant as a single character is generated in the output.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::eol;

Basic usage of the eol generator:

test_generator("\n", eol);
test_generator("abc\n", "abc" << eol);

Epsilon (eps)

The family of eps components allows to create pseudo generators generating an empty string. This feature is sometimes useful either
to force a generator to fail or to succeed or to insert semantic actions into the generation process.

Description

The Epsilon (eps) is a multi-purpose generator that emits a yero length string.

Simple Form

In its simplest form, eps creates a component generating an empty string while always succeeding:

eps // always emits a zero-length string

This form is usually used to trigger a semantic action unconditionally. For example, it is useful in triggering error messages when a
set of alternatives fail:

224

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

r = a | b | c | eps[error()]; // Call error if a, b, and c fail to generate

Semantic Predicate

The eps(b) component generates an empty string as well, but succeeds only if b is true and fails otherwise. It's lazy variant
eps(fb) is equivalent to eps(b) except it evaluates the supplied function fb at generate time, while using the return value as the
criteria to succeed.

Semantic predicates allow you to attach a conditional function anywhere in the grammar. In this role, the epsilon takes a Lazy Argument
that returns true or false. The Lazy Argument is typically a test that is called to resolve ambiguity in the grammar. A generator
failure will be reported when the Lazy Argument result evaluates to false. Otherwise an empty string will be emitted. The general
form is:

eps_p(fb) << rest;

The Lazy Argument fb is called to do a semantic test. If the test returns true, rest will be evaluated. Otherwise, the production will
return early without ever touching rest.

Header

// forwards to <boost/spirit/home/karma/auxiliary/eps.hpp>
#include <boost/spirit/include/karma_eps.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::eps // alias: boost::spirit::karma::eps

Model of

PrimitiveGenerator

Notation

b A boolean value.

fb A Lazy Argument that evaluates to a boolean value.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveGenerator.

SemanticsExpression

Creates a component generating an empty string. Succeeds always.eps

Creates a component generating an empty string. Succeeds if b is true (unless the underlying output stream reports
an error).

eps(b)

Creates a component generating an empty string. Succeeds if fb returns true at generate time (unless the under-
lying output stream reports an error).

eps(fb)

225

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Attributes

AttributeExpression

unusedeps

unusedeps(b)

unusedeps(fb)

Complexity

O(1)

The complexity is constant as no output is generated.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::eps;
using boost::phoenix::val;

Basic usage of the eps generator:

test_generator("abc", eps[std::cout << val("starting eps example")] << "abc");
test_generator("abc", eps(true) << "abc");
test_generator("", eps(false) << "abc"); // fails as eps expression is 'false'

Lazy (lazy)

Description

The familiy of lazy components allows to use a dynamically returned generator component for output generation. It calls the provided
function or function object at generate time using its return value as the actual generator to produce the output.

Header

// forwards to <boost/spirit/home/karma/auxiliary/lazy.hpp>
#include <boost/spirit/include/karma_lazy.hpp>

Also, see Include Structure.

226

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Namespace

Name

boost::spirit::lazy // alias: boost::spirit::karma::lazy

Model of

Generator

Notation

fg A function or function object that evaluates to a generator object (an object exposing the Generator). This function will be
invoked at generate time.

The signature of fg is expected to be

G f(Unused, Context)

where G, the function's return value, is the type of the generator to be invoked, and Context is the generators's Context type (The
first argument is unused to make the Context the second argument. This is done for uniformity with Semantic Actions).

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in Generator.

SemanticsExpression

The Boost.Phoenix function object fg will be invoked at generate time. It is expected to return a generator instance.
This generator is then invoked in order to generate the output. This generator will succeed as long as the invoked
generated succeeds as well (unless the underlying output stream reports an error).

fg

The function or function object will be invoked at generate time. It is expected to return a generator instance (note
this version of lazy does not require fg to be a Boost.Phoenix function object). This generator is then invoked
in order to generate the output. This generator will succeed as long as the invoked generated succeeds as well
(except if the underlying output stream reports an error).

lazy(fg)

Attributes

AttributeExpression

The attribute type G as exposed by the generator g returned from fg.fg

The attribute type G as exposed by the generator g returned from fg.lazy(fg)

Complexity

The complexity of the lazy component is determined by the complexity of the generator returned from fg.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

227

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

namespace karma = boost::spirit::karma;
using boost::spirit::karma::_1;
using boost::spirit::ascii::string;
using boost::phoenix::val;

Basic usage of the lazy generator:

test_generator_attr("abc", karma::lazy(val(string)), "abc");
test_generator("abc", karma::lazy(val(string))[_1 = "abc"]);

Binary

This module includes different generators allowing to output binary data. It includes generators for default, little, and big endian
binary output and a pad generator allowing to control padding of the generated output stream.

Module Header

// forwards to <boost/spirit/home/karma/binary.hpp>
#include <boost/spirit/include/karma_binary.hpp>

Also, see Include Structure.

Binary Native Endianness Generators

Description

The binary native endianness generators described in this section are used to emit binary byte streams layed out conforming to the
native endianess (byte order) of the target architecture.

Header

// forwards to <boost/spirit/home/karma/binary.hpp>
#include <boost/spirit/include/karma_binary.hpp>

Also, see Include Structure.

228

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Namespace

Name

boost::spirit::byte_ // alias: boost::spirit::karma::byte_

boost::spirit::word // alias: boost::spirit::karma::word

boost::spirit::dword // alias: boost::spirit::karma::dword

boost::spirit::qword // alias: boost::spirit::karma::qword

Note

The generators qword and qword(qw) are only available on platforms where the preprocessor constant
BOOST_HAS_LONG_LONG is defined (i.e. on platforms having native support for unsigned long long (64 bit)
integer types).

Model of

PrimitiveGenerator

Notation

b A single byte (8 bit binary value) or a Lazy Argument that evaluates to a single byte

w A 16 bit binary value or a Lazy Argument that evaluates to a 16 bit binary value. This value is always interpreted using native
endianness.

dw A 32 bit binary value or a Lazy Argument that evaluates to a 32 bit binary value. This value is always interpreted using native
endianness.

qw A 64 bit binary value or a Lazy Argument that evaluates to a 64 bit binary value. This value is always interpreted using native
endianness.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveGenerator.

229

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionExpression

Output the binary representation of the least significant byte of the mandatory attribute. This generator never fails
(unless the underlying output stream reports an error).

byte_

Output the binary representation of the least significant 16 bits of the mandatory attribute in native endian repres-
entation. This generator never fails (unless the underlying output stream reports an error).

word

Output the binary representation of the least significant 32 bits of the mandatory attribute in native endian repres-
entation. This generator never fails (unless the underlying output stream reports an error).

dword

Output the binary representation of the least significant 64 bits of the mandatory attribute in native endian repres-
entation. This generator never fails (unless the underlying output stream reports an error).

qword

Output the binary representation of the least significant byte of the immediate parameter. This generator never
fails (unless the underlying output stream reports an error).

byte_(b)

Output the binary representation of the least significant 16 bits of the immediate parameter in native endian rep-
resentation. This generator never fails (unless the underlying output stream reports an error).

word(w)

Output the binary representation of the least significant 32 bits of the immediate parameter in native endian rep-
resentation. This generator never fails (unless the underlying output stream reports an error).

dword(dw)

Output the binary representation of the least significant 64 bits of the immediate parameter in native endian rep-
resentation. This generator never fails (unless the underlying output stream reports an error).

qword(qw)

Attributes

AttributeExpression

boost::uint_least8_t, attribute is mandatory (otherwise compilation will fail)byte_

boost::uint_least16_t, attribute is mandatory (otherwise compilation will fail)word

boost::uint_least32_t, attribute is mandatory (otherwise compilation will fail)dword

boost::uint_least64_t, attribute is mandatory (otherwise compilation will fail)qword

unusedbyte_(b)

unusedword(w)

unuseddword(dw)

unusedqword(qw)

Note

In addition to their usual attribute of type Attrib all listed generators accept an instance of a boost::option-
al<Attrib> as well. If the boost::optional<> is initialized (holds a value) the generators behave as if their
attribute was an instance of Attrib and emit the value stored in the boost::optional<>. Otherwise the generators
will fail.

Complexity

O(N), where N is the number of bytes emitted by the binary generator

230

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::byte_;
using boost::spirit::karma::word;
using boost::spirit::karma::dword;
using boost::spirit::karma::qword;

Basic usage of the native binary generators with some results for little endian platforms:

test_binary_generator("\x01", 1, byte_(0x01));
test_binary_generator("\x01\x02", 2, word(0x0201));
test_binary_generator("\x01\x02\x03\x04", 4, dword(0x04030201));
test_binary_generator("\x01\x02\x03\x04\x05\x06\x07\x08", 8, qword(0x0807060504030201LL));

test_binary_generator_attr("\x01", 1, byte_, 0x01);
test_binary_generator_attr("\x01\x02", 2, word, 0x0201);
test_binary_generator_attr("\x01\x02\x03\x04", 4, dword, 0x04030201);
test_binary_generator_attr("\x01\x02\x03\x04\x05\x06\x07\x08", 8, qword, 0x0807060504030201LL);

Basic usage of the native binary generators with some results for big endian platforms:

test_binary_generator("\x01", 1, byte_(0x01));
test_binary_generator("\x02\x01", 2, word(0x0201));
test_binary_generator("\x04\x03\x02\x01", 4, dword(0x04030201));
test_binary_generator("\x08\x07\x06\x05\x04\x03\x02\x01", 8, qword(0x0807060504030201LL));

test_binary_generator_attr("\x01", 1, byte_, 0x01);
test_binary_generator_attr("\x02\x01", 2, word, 0x0201);
test_binary_generator_attr("\x04\x03\x02\x01", 4, dword, 0x04030201);
test_binary_generator_attr("\x08\x07\x06\x05\x04\x03\x02\x01", 8, qword, 0x0807060504030201LL);

Binary Little Endianness Generators

Description

The little native endianness generators described in this section are used to emit binary byte streams layed out conforming to the
little endianess byte order.

231

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Header

// forwards to <boost/spirit/home/karma/binary.hpp>
#include <boost/spirit/include/karma_binary.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::little_word // alias: boost::spirit::karma::little_word

boost::spirit::little_dword // alias: boost::spirit::karma::little_dword

boost::spirit::little_qword // alias: boost::spirit::karma::little_qword

Note

The generators little_qword and little_qword(qw) are only available on platforms where the preprocessor
constant BOOST_HAS_LONG_LONG is defined (i.e. on platforms having native support for unsigned long long
(64 bit) integer types).

Model of

PrimitiveGenerator

Notation

w A 16 bit binary value or a Lazy Argument that evaluates to a 16 bit binary value. This value is always interpreted using native
endianness.

dw A 32 bit binary value or a Lazy Argument that evaluates to a 32 bit binary value. This value is always interpreted using native
endianness.

qw A 64 bit binary value or a Lazy Argument that evaluates to a 64 bit binary value. This value is always interpreted using native
endianness.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveGenerator.

232

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionExpression

Output the binary representation of the least significant 16 bits of the mandatory attribute in little endian
representation. This generator never fails (unless the underlying output stream reports an error).

little_word

Output the binary representation of the least significant 32 bits of the mandatory attribute in little endian
representation. This generator never fails (unless the underlying output stream reports an error).

little_dword

Output the binary representation of the least significant 64 bits of the mandatory attribute in little endian
representation. This generator never fails (unless the underlying output stream reports an error).

little_qword

Output the binary representation of the least significant 16 bits of the immediate parameter in little en-
dian representation. This generator never fails (unless the underlying output stream reports an error).

little_word(w)

Output the binary representation of the least significant 32 bits of the immediate parameter in little en-
dian representation. This generator never fails (unless the underlying output stream reports an error).

little_dword(dw)

Output the binary representation of the least significant 64 bits of the immediate parameter in little en-
dian representation. This generator never fails (unless the underlying output stream reports an error).

little_qword(qw)

Attributes

AttributeExpression

boost::uint_least16_t, attribute is mandatory (otherwise compilation will fail)little_word

boost::uint_least32_t, attribute is mandatory (otherwise compilation will fail)little_dword

boost::uint_least64_t, attribute is mandatory (otherwise compilation will fail)little_qword

unusedlittle_word(w)

unusedlittle_dword(dw)

unusedlittle_qword(qw)

Complexity

O(N), where N is the number of bytes emitted by the binary generator

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

233

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

using boost::spirit::karma::little_word;
using boost::spirit::karma::little_dword;
using boost::spirit::karma::little_qword;

Basic usage of the little binary generators:

test_binary_generator("\x01\x02", 2, little_word(0x0201));
test_binary_generator("\x01\x02\x03\x04", 4, little_dword(0x04030201));
test_binary_generator("\x01\x02\x03\x04\x05\x06\x07\x08", 8, little_qword(0x0807060504030201LL));

test_binary_generator_attr("\x01\x02", 2, little_word, 0x0201);
test_binary_generator_attr("\x01\x02\x03\x04", 4, little_dword, 0x04030201);
test_binary_generator_at↵
tr("\x01\x02\x03\x04\x05\x06\x07\x08", 8, little_qword, 0x0807060504030201LL);

Binary Big Endianness Generators

Description

The big native endianness generators described in this section are used to emit binary byte streams layed out conforming to the big
endianess byte order.

Header

// forwards to <boost/spirit/home/karma/binary.hpp>
#include <boost/spirit/include/karma_binary.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::big_word // alias: boost::spirit::karma::big_word

boost::spirit::big_dword // alias: boost::spirit::karma::big_dword

boost::spirit::big_qword // alias: boost::spirit::karma::big_qword

Note

The generators big_qword and big_qword(qw) are only available on platforms where the preprocessor constant
BOOST_HAS_LONG_LONG is defined (i.e. on platforms having native support for unsigned long long (64 bit)
integer types).

Model of

PrimitiveGenerator

Notation

w A 16 bit binary value or a Lazy Argument that evaluates to a 16 bit binary value. This value is always interpreted using native
endianness.

dw A 32 bit binary value or a Lazy Argument that evaluates to a 32 bit binary value. This value is always interpreted using native
endianness.

234

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

qw A 64 bit binary value or a Lazy Argument that evaluates to a 64 bit binary value. This value is always interpreted using native
endianness.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveGenerator.

DescriptionExpression

Output the binary representation of the least significant 16 bits of the mandatory attribute in big endian
representation. This generator never fails (unless the underlying output stream reports an error).

big_word

Output the binary representation of the least significant 32 bits of the mandatory attribute in big endian
representation. This generator never fails (unless the underlying output stream reports an error).

big_dword

Output the binary representation of the least significant 64 bits of the mandatory attribute in big endian
representation. This generator never fails (unless the underlying output stream reports an error).

big_qword

Output the binary representation of the least significant 16 bits of the immediate parameter in big endian
representation. This generator never fails (unless the underlying output stream reports an error).

big_word(w)

Output the binary representation of the least significant 32 bits of the immediate parameter in big endian
representation. This generator never fails (unless the underlying output stream reports an error).

big_dword(dw)

Output the binary representation of the least significant 64 bits of the immediate parameter in big endian
representation. This generator never fails (unless the underlying output stream reports an error).

big_qword(qw)

Attributes

AttributeExpression

boost::uint_least16_t, attribute is mandatory (otherwise compilation will fail)big_word

boost::uint_least32_t, attribute is mandatory (otherwise compilation will fail)big_dword

boost::uint_least64_t, attribute is mandatory (otherwise compilation will fail)big_qword

unusedbig_word(w)

unusedbig_dword(dw)

unusedbig_qword(qw)

Complexity

O(N), where N is the number of bytes emitted by the binary generator

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

235

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::big_word;
using boost::spirit::karma::big_dword;
using boost::spirit::karma::big_qword;

Basic usage of the big binary generators:

test_binary_generator("\x02\x01", 2, big_word(0x0201));
test_binary_generator("\x04\x03\x02\x01", 4, big_dword(0x04030201));
test_binary_generator("\x08\x07\x06\x05\x04\x03\x02\x01", 8, big_qword(0x0807060504030201LL));

test_binary_generator_attr("\x02\x01", 2, big_word, 0x0201);
test_binary_generator_attr("\x04\x03\x02\x01", 4, big_dword, 0x04030201);
test_binary_generator_attr("\x08\x07\x06\x05\x04\x03\x02\x01", 8, big_qword, 0x0807060504030201LL);

Char

This module includes different character oriented generators allowing to output single characters. Currently, it includes literal chars
(e.g. 'x', L'x'), char_ (single characters, ranges and character sets) and the encoding specific character classifiers (alnum, alpha,
digit, xdigit, etc.).

Module Header

// forwards to <boost/spirit/home/karma/char.hpp>
#include <boost/spirit/include/karma_char.hpp>

Also, see Include Structure.

Character Generators (char_, lit)

Description

The character generators described in this section are:

The char_ generator emits single characters. The char_ generator has an associated Character Encoding Namespace. This is needed
when doing basic operations such as forcing lower or upper case and dealing with character ranges.

There are various forms of char_.

char_

The no argument form of char_ emits any character in the associated Character Encoding Namespace.

char_ // emits any character as supplied by the attribute

char_(ch)

The single argument form of char_ (with a character argument) emits the supplied character.

236

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

char_('x') // emits 'x'
char_(L'x') // emits L'x'
char_(x) // emits x (a char)

char_(first, last)

char_ with two arguments, emits any character from a range of characters as supplied by the attribute.

char_('a','z') // alphabetic characters
char_(L'0',L'9') // digits

A range of characters is created from a low-high character pair. Such a generator emits a single character that is in the range, including
both endpoints. Note, the first character must be before the second, according to the underlying Character Encoding Namespace.

Character mapping is inherently platform dependent. It is not guaranteed in the standard for example that 'A' < 'Z', that is why
in Spirit2, we purposely attach a specific Character Encoding Namespace (such as ASCII, ISO-8859-1) to the char_ generator to
eliminate such ambiguities.

Note

Sparse bit vectors

To accomodate 16/32 and 64 bit characters, the char-set statically switches from a std::bitset implementation
when the character type is not greater than 8 bits, to a sparse bit/boolean set which uses a sorted vector of disjoint
ranges (range_run). The set is constructed from ranges such that adjacent or overlapping ranges are coalesced.

range_runs are very space-economical in situations where there are lots of ranges and a few individual disjoint
values. Searching is O(log n) where n is the number of ranges.

char_(def)

Lastly, when given a string (a plain C string, a std::basic_string, etc.), the string is regarded as a char-set definition string
following a syntax that resembles posix style regular expression character sets (except that double quotes delimit the set elements
instead of square brackets and there is no special negation ^ character). Examples:

char_("a-zA-Z") // alphabetic characters
char_("0-9a-fA-F") // hexadecimal characters
char_("actgACTG") // DNA identifiers
char_("\x7f\x7e") // Hexadecimal 0x7F and 0x7E

These generators emit any character from a range of characters as supplied by the attribute.

lit(ch)

lit, when passed a single character, behaves like the single argument char_ except that lit does not consume an attribute. A plain
char or wchar_t is equivalent to a lit.

Note

lit is reused by the String Generators, the char generators, and the Numeric Generators (see signed integer, unsigned
integer, and real number generators). In general, a char generator is created when you pass in a character, a string
generator is created when you pass in a string, and a numeric generator is created when you use a numeric literal.
The exception is when you pass a single element literal string, e.g. lit("x"). In this case, we optimize this to
create a char generator instead of a string generator.

Examples:

237

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

'x'
lit('x')
lit(L'x')
lit(c) // c is a char

Header

// forwards to <boost/spirit/home/karma/char/char.hpp>
#include <boost/spirit/include/karma_char_.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::lit // alias: boost::spirit::karma::lit

ns::char_

In the table above, ns represents a Character Encoding Namespace.

Model of

PrimitiveGenerator

Notation

ch, ch1, ch2 Character-class specific character (See Character Class Types), or a Lazy Argument that
evaluates to a character-class specific character value

cs Character-set specifier string (See Character Class Types), or a Lazy Argument that evaluates
to a character-set specifier string, or a pointer/reference to a null-terminated array of characters.
This string specifies a char-set definition string following a syntax that resembles posix style
regular expression character sets (except the square brackets and the negation ^ character).

ns A Character Encoding Namespace.

cg A char generator, a char range generator, or a char set generator.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveGenerator.

238

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionExpression

Generate the character literal ch. This generator never fails (unless the underlying output stream reports
an error).

ch

Generate the character literal ch. This generator never fails (unless the underlying output stream reports
an error).

lit(ch)

Generate the character provided by a mandatory attribute interpreted in the character set defined by
ns. This generator never fails (unless the underlying output stream reports an error).

ns::char_

Generate the character ch as provided by the immediate literal value the generator is initialized from.
If this generator has an associated attribute it succeeds only as long as the attribute is equal to the im-
mediate literal (unless the underlying output stream reports an error). Otherwise this generator fails
and does not generate any output.

ns::char_(ch)

Generate the character c as provided by the immediate literal value the generator is initialized from. If
this generator has an associated attribute it succeeds only as long as the attribute is equal to the imme-
diate literal (unless the underlying output stream reports an error). Otherwise this generator fails and
does not generate any output.

ns::char_("c")

Generate the character provided by a mandatory attribute interpreted in the character set defined by
ns. The generator succeeds as long as the attribute belongs to the character range [ch1, ch2] (unless
the underlying output stream reports an error). Otherwise this generator fails and does not generate any
output.

ns::char_(ch1,

ch2)

Generate the character provided by a mandatory attribute interpreted in the character set defined by
ns. The generator succeeds as long as the attribute belongs to the character set cs (unless the underlying
output stream reports an error). Otherwise this generator fails and does not generate any output.

ns::char_(cs)

Negate cg. The result is a negated char generator that inverts the test condition of the character gener-
ator it is attached to.

~cg

A character ch is assumed to belong to the character range defined by ns::char_(ch1, ch2) if its character value (binary repres-
entation) interpreted in the character set defined by ns is not smaller than the character value of ch1 and not larger then the character
value of ch2 (i.e. ch1 <= ch <= ch2).

The charset parameter passed to ns::char_(charset) must be a string containing more than one character. Every single char-
acter in this string is assumed to belong to the character set defined by this expression. An exception to this is the '-' character
which has a special meaning if it is not specified as the first and not the last character in charset. If the '-' is used in between to
characters it is interpreted as spanning a character range. A character ch is considered to belong to the defined character set charset
if it matches one of the characters as specified by the string parameter described above. For example

DescriptionExample

'a', 'b', and 'c'char_("abc")

all characters (and including) from 'a' to 'z'char_("a-z")

all characters (and including) from 'a' to 'z' and 'A' and 'Z'char_("a-zA-Z")

'-' and all characters (and including) from '1' to '9'char_("-1-9")

239

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Attributes

AttributeExpression

unusedch

unusedlit(ch)

Ch, attribute is mandatory (otherwise compilation will fail). Ch is the character type of the Character
Encoding Namespace, ns.

ns::char_

Ch, attribute is optional, if it is supplied, the generator compares the attribute with ch and succeeds
only if both are equal, failing otherwise. Ch is the character type of the Character Encoding
Namespace, ns.

ns::char_(ch)

Ch, attribute is optional, if it is supplied, the generator compares the attribute with c and succeeds
only if both are equal, failing otherwise. Ch is the character type of the Character Encoding
Namespace, ns.

ns::char_("c")

Ch, attribute is mandatory (otherwise compilation will fail), the generator succeeds if the attribute
belongs to the character range [ch1, ch2] interpreted in the character set defined by ns. Ch is the
character type of the Character Encoding Namespace, ns.

ns::char_(ch1, ch2)

Ch, attribute is mandatory (otherwise compilation will fail), the generator succeeds if the attribute
belongs to the character set cs, interpreted in the character set defined by ns. Ch is the character
type of the Character Encoding Namespace, ns.

ns::char_(cs)

Attribute of cg~cg

Note

In addition to their usual attribute of type Ch all listed generators accept an instance of a boost::optional<Ch>
as well. If the boost::optional<> is initialized (holds a value) the generators behave as if their attribute was an
instance of Ch and emit the value stored in the boost::optional<>. Otherwise the generators will fail.

Complexity

O(1)

The complexity of ch, lit(ch), ns::char_, ns::char_(ch), and ns::char_("c") is constant as all generators emit exactly
one character per invocation.

The character range generator (ns::char_(ch1, ch2)) additionally requires constant lookup time for the verification whether
the attribute belongs to the character range.

The character set generator (ns::char_(cs)) additionally requires O(log N) lookup time for the verification whether the attribute
belongs to the character set, where N is the number of characters in the character set.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

240

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::lit;
using boost::spirit::ascii::char_;

Basic usage of char_ generators:

test_generator("A", 'A');
test_generator("A", lit('A'));

test_generator_attr("a", char_, 'a');
test_generator("A", char_('A'));
test_generator_attr("A", char_('A'), 'A');
test_generator_attr("", char_('A'), 'B'); // fails (as 'A' != 'B')

test_generator_attr("A", char_('A', 'Z'), 'A');
test_generator_attr("", char_('A', 'Z'), 'a'); // fails (as 'a' does not belong to 'A'...'Z')

test_generator_attr("k", char_("a-z0-9"), 'k');
test_generator_attr("", char_("a-z0-9"), 'A'); // fails (as 'A' does not belong to "a-z0-9")

Character Classification (alnum, digit, etc.)

Description

The library has the full repertoire of single character generators for character classification. This includes the usual alnum, alpha,
digit, xdigit, etc. generators. These generators have an associated Character Encoding Namespace. This is needed when doing
basic operations such as forcing lower or upper case.

Header

// forwards to <boost/spirit/home/karma/char/char_class.hpp>
#include <boost/spirit/include/karma_char_class.hpp>

Also, see Include Structure.

241

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Namespace

Name

ns::alnum

ns::alpha

ns::blank

ns::cntrl

ns::digit

ns::graph

ns::lower

ns::print

ns::punct

ns::space

ns::upper

ns::xdigit

In the table above, ns represents a Character Encoding Namespace used by the corresponding character class generator. All listed
generators have a mandatory attribute Ch and will not compile if no attribute is associated.

Model of

PrimitiveGenerator

Notation

ns A Character Encoding Namespace.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveGenerator.

242

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

SemanticsExpression

If the mandatory attribute satisfies the concept of std::isalnum in the Character Encoding Namespace the
generator succeeds after emitting its attribute (unless the underlying output stream reports an error). This gener-
ator fails otherwise while not generating anything.

ns::alnum

If the mandatory attribute satisfies the concept of std::isalpha in the Character Encoding Namespace the
generator succeeds after emitting its attribute (unless the underlying output stream reports an error). This gener-
ator fails otherwise while not generating anything.

ns::alpha

If the mandatory attribute satisfies the concept of std::isblank in the Character Encoding Namespace the
generator succeeds after emitting its attribute (unless the underlying output stream reports an error). This gener-
ator fails otherwise while not generating anything.

ns::blank

If the mandatory attribute satisfies the concept of std::iscntrl in the Character Encoding Namespace the
generator succeeds after emitting its attribute (unless the underlying output stream reports an error). This gener-
ator fails otherwise while not generating anything.

ns::cntrl

If the mandatory attribute satisfies the concept of std::isdigit in the Character Encoding Namespace the
generator succeeds after emitting its attribute (unless the underlying output stream reports an error). This gener-
ator fails otherwise while not generating anything.

ns::digit

If the mandatory attribute satisfies the concept of std::isgraph in the Character Encoding Namespace the
generator succeeds after emitting its attribute (unless the underlying output stream reports an error). This gener-
ator fails otherwise while not generating anything.

ns::graph

If the mandatory attribute satisfies the concept of std::isprint in the Character Encoding Namespace the
generator succeeds after emitting its attribute (unless the underlying output stream reports an error). This gener-
ator fails otherwise while not generating anything.

ns::print

If the mandatory attribute satisfies the concept of std::ispunct in the Character Encoding Namespace the
generator succeeds after emitting its attribute (unless the underlying output stream reports an error). This gener-
ator fails otherwise while not generating anything.

ns::punct

If the mandatory attribute satisfies the concept of std::isxdigit in the Character Encoding Namespace the
generator succeeds after emitting its attribute (unless the underlying output stream reports an error). This gener-
ator fails otherwise while not generating anything.

ns::xdigit

If the mandatory attribute satisfies the concept of std::islower in the Character Encoding Namespace the
generator succeeds after emitting its attribute (unless the underlying output stream reports an error). This gener-
ator fails otherwise while not generating anything.

ns::lower

If the mandatory attribute satisfies the concept of std::isupper in the Character Encoding Namespace the
generator succeeds after emitting its attribute (unless the underlying output stream reports an error). This gener-
ator fails otherwise while not generating anything.

ns::upper

If the optional attribute satisfies the concept of std::isspace in the Character Encoding Namespace the gen-
erator succeeds after emitting its attribute (unless the underlying output stream reports an error). This generator
fails otherwise while not generating anything.If no attribute is supplied this generator emits a single space
character in the character set defined by ns.

ns::space

Possible values for ns are described in the section Character Encoding Namespace.

243

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

The generators alpha and alnum might seem to behave unexpected if used inside a lower[] or upper[] directive.
Both directives additionally apply the semanitics of std::islower or std::isupper to the respective character
class. Some examples:

std::string s;
std::back_insert_iterator<std::string> out(s);
generate(out, lower[alpha], 'a'); // succeeds emitting 'a'
generate(out, lower[alpha], 'A'); // fails

The generator directive upper[] behaves correspondingly.

Attributes

All listed character class generators can take any attribute Ch. All character class generators (except space) require
an attribute and will fail compiling otherwise.

Note

In addition to their usual attribute of type Ch all listed generators accept an instance of a boost::optional<Ch>
as well. If the boost::optional<> is initialized (holds a value) the generators behave as if their attribute was an
instance of Ch and emit the value stored in the boost::optional<>. Otherwise the generators will fail.

Complexity

O(1)

The complexity is constant as the generators emit not more than one character per invocation.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::alpha;
using boost::spirit::karma::upper;

Basic usage of an alpha generator:

244

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

test_generator_attr("a", alpha, 'a');
test_generator_attr("A", alpha, 'A');
test_generator_attr("", alpha, '1'); // fails (as isalpha('1') is false)
test_generator_attr("A", upper[alpha], 'A');
test_generator_attr("", upper[alpha], 'a'); // fails (as isupper('a') is false)

Directive

This module includes different generator directives. It includes alignment directives (left_align[], center[], and
right_align[]), repetition (repeat[]), directives controlling automatic delimiting (verbatim[] and delimit[]), controlling
case sensitivity (upper[] and lower[]), field width (maxwidth[]), buffering (buffer[]), splitting into columns (columns[])
and attribute handling (omit[]).

Module Header

// forwards to <boost/spirit/home/karma/directive.hpp>
#include <boost/spirit/include/karma_directive.hpp>

Also, see Include Structure.

Alignment Directives (left_align[], center[], right_align[])

Description

The alignment directives allow to left align, right align or center output emitted by other generators into columns of a specified width
while using an arbitrary generator to create the padding.

Header

For the left_align[] directive:

// forwards to <boost/spirit/home/karma/directive/left_alignment.hpp>
#include <boost/spirit/include/karma_left_alignment.hpp>

For the center[] directive:

// forwards to <boost/spirit/home/karma/directive/center_alignment.hpp>
#include <boost/spirit/include/karma_center_alignment.hpp>

For the right_align[] directive:

// forwards to <boost/spirit/home/karma/directive/right_alignment.hpp>
#include <boost/spirit/include/karma_right_alignment.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::left_align // alias: boost::spirit::karma::left_align

boost::spirit::center // alias: boost::spirit::karma::center

boost::spirit::right_align // alias: boost::spirit::karma::right_align

245

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Model of

UnaryGenerator

Notation

a A generator object

pad A generator object, or a Lazy Argument that evaluates to a generator object

A, Pad Attribute types of the generators a and pad

width Numeric literal, any unsigned integer value, or a Lazy Argument that evaluates to an unsigned integer
value

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryGenerator.

246

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

SemanticsExpression

Generate a left aligned in a column of width as defined by the preprocessor constant
BOOST_KARMA_DEFAULT_FIELD_LENGTH (default: 10), while using space to emit the necessary
padding. This generator succeeds as long as its embedded generator a does not fail (unless the
underlying output stream reports an error).

left_align[a]

Generate a left aligned in a column of the given width, while using space to emit the necessary
padding. This generator succeeds as long as its embedded generator a does not fail (unless the
underlying output stream reports an error).

left_align(width)[a]

Generate a left aligned in a column of width as defined by the preprocessor constant
BOOST_KARMA_DEFAULT_FIELD_LENGTH (default: 10), while using the generator pad to emit
the necessary padding. This generator succeeds as long as its embedded and padding generators
a and pad do not fail (except if the underlying output stream reports an error).

left_align(pad)[a]

Generate a left aligned in a column of the given width, while using the generator pad to emit the
necessary padding. This generator succeeds as long as its embedded and padding generators a and
pad do not fail (unless the underlying output stream reports an error).

l e f t _ a l i g n (p a d ,

width)[a]

Generate a centered in a column of width as defined by the preprocessor constant
BOOST_KARMA_DEFAULT_FIELD_LENGTH (default: 10), while using space to emit the necessary
padding. This generator succeeds as long as its embedded generator a does not fail (unless the
underlying output stream reports an error).

center[a]

Generate a centered in a column of the given width, while using space to emit the necessary
padding. This generator succeeds as long as its embedded generator a does not fail (unless the
underlying output stream reports an error).

center(width)[a]

Generate a centered in a column of width as defined by the preprocessor constant
BOOST_KARMA_DEFAULT_FIELD_LENGTH (default: 10), while using the generator pad to emit
the necessary padding. This generator succeeds as long as its embedded and padding generators
a and pad do not fail (except if the underlying output stream reports an error).

center(pad)[a]

Generate a centered in a column of the given width, while using the generator pad to emit the
necessary padding. This generator succeeds as long as its embedded and padding generators a and
pad do not fail (unless the underlying output stream reports an error).

center(pad, width)[a]

Generate a right aligned in a column of width as defined by the preprocessor constant
BOOST_KARMA_DEFAULT_FIELD_LENGTH (default: 10), while using space to emit the necessary
padding. This generator succeeds as long as its embedded generator a does not fail (unless the
underlying output stream reports an error).

right_align[a]

Generate a right aligned in a column of the given width, while using space to emit the necessary
padding. This generator succeeds as long as its embedded generator a does not fail (unless the
underlying output stream reports an error).

right_align(width)[a]

Generate a right aligned in a column of width as defined by the preprocessor constant
BOOST_KARMA_DEFAULT_FIELD_LENGTH (default: 10), while using the generator pad to emit
the necessary padding. This generator succeeds as long as its embedded and padding generators
a and pad do not fail (except if the underlying output stream reports an error).

right_align(pad)[a]

Generate a right aligned in a column of the given width, while using the generator pad to emit
the necessary padding. This generator succeeds as long as its embedded and padding generators
a and pad do not fail (unless the underlying output stream reports an error).

r i g h t _ a l i g n (p a d ,

width)[a]

247

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

None of the generator directives listed above limits the emitted output to the respective column width. If the emitted
output is longer than the specified (or implied) column width, the generated output overruns the column to the right.

If the output needs to be limitted to a specified column width, use the maxwidth[] directive, for instance:

maxwidth(8)[right_align(12)["1234567890"]]

which will output (without the quotes):

" 123456"

Attributes

See Compound Attribute Notation.

248

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

AttributeExpression

a: A --> left_align[a]: A
a: Unused --> left_align[a]: Unused

left_align[]

a: A --> left_align(width)[a]: A
a: Unused --> left_align(width)[a]: Unused

left_align(width)[]

a: A, pad: Pad --> left_align(pad)[a]: A
a: Unused, pad: Pad --> left_align(pad)[a]: Unused

left_align(pad)[]

a: A, pad: Pad --> left_align(pad, width)[a]: A
a: Unused, pad: Pad --> left_align(pad, width)[a]: Unused

left_align(pad, width)[]

a: A --> center[a]: A
a: Unused --> center[a]: Unused

center[]

a: A --> center(width)[a]: A
a: Unused --> center(width)[a]: Unused

center(width)[]

a: A, pad: Pad --> center(pad)[a]: A
a: Unused, pad: Pad --> center(pad)[a]: Unused

center(pad)[]

a: A, pad: Pad --> center(pad, width)[a]: A
a: Unused, pad: Pad --> center(pad, width)[a]: Unused

center(pad, width)[]

a: A --> right_align[a]: A
a: Unused --> right_align[a]: Unused

right_align[]

a: A --> right_align(width)[a]: A
a: Unused --> right_align(width)[a]: Unused

right_align(width)[]

a: A, pad: Pad --> right_align(pad)[a]: A
a: Unused, pad: Pad --> right_align(pad)[a]: Unused

right_align(pad)[]

a: A, pad: Pad --> right_align(pad, width)[a]: A
a: Unused, pad: Pad --> right_align(pad, width)[a]: Unused

right_align(pad, width)[]

249

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Complexity

The overall complexity of the alignment generator directives is defined by the complexity of its embedded and
padding generator. The complexity of the left alignment directive generator itself is O(1). The complexity of the
center and right alignment directive generators itself is O(N). where N is the number of characters emitted by the
embedded and padding generators.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::double_;
using boost::spirit::karma::left_align;
using boost::spirit::karma::center;
using boost::spirit::karma::right_align;

Basic usage of the alignment generators:

std::pair<double, double> p (1.0, 2.0);
test_generator_attr("1.0 |2.0", left_align(8)[double_] << '|' << double_, p);
test_generator_attr(" 1.0 |2.0", center(8)[double_] << '|' << double_, p);
test_generator_attr(" 1.0|2.0", right_align(8)[double_] << '|' << double_, p);

Repetition Directive (repeat[])

Description

The repetition directive allows to repeat an arbitrary generator expression while optionally specifying the lower and upper repetition
counts. It provides a more powerful and flexible mechanism for repeating a generator. There are grammars that are impractical and
cumbersome, if not impossible, for the basic EBNF iteration syntax (unary '*' and the unary '+') to specify. Examples:

• A file name may have a maximum of 255 characters only.

• A specific bitmap file format has exactly 4096 RGB color information.

• A 256 bit binary string (1..256 1s or 0s).

Header

// forwards to <boost/spirit/home/karma/directive/repeat.hpp>
#include <boost/spirit/include/karma_repeat.hpp>

Also, see Include Structure.

250

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Namespace

Name

boost::spirit::repeat // alias: boost::spirit::karma::repeat

boost::spirit::inf // alias: boost::spirit::karma::inf

Model of

UnaryGenerator

Notation

a A generator object

num, num1, num2 Numeric literals, any unsigned integer value, or a Lazy Argument that evaluates to an unsigned integer
value

inf Placeholder expression standing for 'no upper repeat limit'

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryGenerator.

SemanticsExpression

Repeat the generator a zero or more times. This generator succeeds as long as its embedded generator
a does not fail (except if the underlying output stream reports an error). This variant of repeat[] is
semantically equivalent to the Kleene Star operator *a

repeat[a]

Repeat the generator a exactly num times. This generator succeeds as long as its embedded generator
a does not fail and as long as the associated attribute (container) contains at least num elements (unless
the underlying output stream reports an error).

repeat(num)[a]

Repeat the generator a at least num1 times but not more than num2 times. This generator succeeds as
long as its embedded generator a does not fail and as long as the associated attribute (container)
contains at least num1 elements (unless the underlying output stream reports an error). If the associated
attribute (container) does contain more than num2 elements, this directive limits the repeat count to
num2.

r e p e a t (n u m 1 ,

num2)[a]

Repeat the generator a at least num1 times. No upper limit for the repeat count is set. This generator
succeeds as long as its embedded generator a does not fail and as long as the associated attribute
(container) contains at least num elements (unless the underlying output stream reports an error).

repeat(num, inf)[a]

Note

All failing iterations of the embedded generator will consume one element from the supplied attribute. The overall
repeat[a] will succeed as long as the iteration criteria (number of successful invocations of the embedded gener-
ator) is fullfilled (unless the underlying output stream reports an error).

Attributes

See Compound Attribute Notation.

251

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

AttributeExpression

a: A --> repeat[a]: vector<A>
a: Unused --> repeat[a]: Unused

repeat[a]

a: A --> repeat(num)[a]: vector<A>
a: Unused --> repeat(num)[a]: Unused

repeat(num)[a]

a: A --> repeat(num1, num2)[a]: vector<A>
a: Unused --> repeat(num1, num2)[a]: Un↵
used

repeat(num1, num2)[a]

a: A --> repeat(num, inf)[a]: vector<A>
a: Unused --> repeat(num, inf)[a]: Unused

repeat(num, inf)[a]

Important

The table above uses vector<A> as placeholders only.

The notation of vector<A> stands for any STL container holding elements of type A.

It is important to note, that the repeat[] directive does not perform any buffering of the output generated by its embedded elements.
That means that any failing element generator might have already generated some output, which is not rolled back.

Tip

The simplest way to force a repeat[] directive to behave as if it did buffering is to wrap it into a buffering directive
(see buffer):

buffer[repeat[a]]

which will not generate any output in case of a failing generator repeat[a]. The expression:

repeat[buffer[a]]

will not generate any partial output from a generator a if it fails generating in the middle of its output. The overall
expression will still generate the output as produced by all succeeded invocations of the generator a.

Complexity

The overall complexity of the repetition generator is defined by the complexity of its embedded generator. The
complexity of the repeat itself is O(N), where N is the number of repetitions to execute.

252

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::double_;
using boost::spirit::karma::repeat;

Basic usage of repeat generator directive:

std::vector<double> v;
v.push_back(1.0);
v.push_back(2.0);
v.push_back(3.0);

test_generator_attr("[1.0][2.0][3.0]", repeat['[' << double_ << ']'], v);
test_generator_attr("[1.0][2.0]", repeat(2)['[' << double_ << ']'], v);

// fails because of insufficient number of items
test_generator_attr("", repeat(4)['[' << double_ << ']'], v);

Directives Controlling Automatic Delimiting (verbatim[], delimit[])

Description

The directives delimit[] and verbatim[] can be used to control automatic delimiting. The directive verbatim[] disables any
automatic delimiting, while the directive delimit[] (re-)enables automatic delimiting.

Header

For the verbatim[] directive:

// forwards to <boost/spirit/home/karma/directive/verbatim.hpp>
#include <boost/spirit/include/karma_verbatim.hpp>

For the delimit[] directive:

// forwards to <boost/spirit/home/karma/directive/delimit.hpp>
#include <boost/spirit/include/karma_delimit.hpp>

Also, see Include Structure.

253

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Namespace

Name

boost::spirit::verbatim // alias: boost::spirit::karma::verbatim

boost::spirit::delimit // alias: boost::spirit::karma::delimit

Model of

UnaryGenerator

Notation

a A generator object

d A generator object, or a Lazy Argument that evaluates to a generator object

A, D Attribute types of the generators a and d

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryGenerator.

SemanticsExpression

Enable automatic delimiting for the embedded generator a while using the space generator as the delimiting
generator. If used inside a verbatim[] directive it re-enables the delimiter generator as used outside of
this verbatim[] instead. The directive succeeds as long as the embedded generator succeeded (unless the
underlying output stream reports an error).

delimit[a]

Enable automatic delimiting for the embedded generator a while using the generator d as the delimiting
generator. The directive succeeds as long as the embedded generator succeeded (unless the underlying output
stream reports an error).

delimit(d)[a]

Disable automatic delimiting for the embedded generator a. The directive succeeds as long as the embedded
generator succeeded (unless the underlying output stream reports an error). This directive it has no effect if
it is used when no delimiting is active.

verbatim[a]

Attributes

See Compound Attribute Notation.

254

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

AttributeExpression

a: A --> delimit[a]: A
a: Unused --> delimit[a]: Unused

delimit[a]

a: A, d: D --> delimit(d)[a]: A
a: Unused, d: D --> delimit(d)[a]: Un↵
used

delimit(d)[a]

a: A --> verbatim[a]: A
a: Unused --> verbatim[a]: Unused

verbatim[a]

Complexity

The overall complexity of the generator directives delimit[] and verbatim[] is defined by the complexity of
its embedded generators. The complexity of the directives themselves is O(1).

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::double_;
using boost::spirit::karma::delimit;
using boost::spirit::karma::verbatim;

Basic usage of delimit generator directive:

test_generator_attr("[2.0 , 4.3] ",
 delimit['[' << double_ << ',' << double_ << ']'], 2.0, 4.3);
test_generator_attr("[*2.0*,*4.3*]*",
 delimit('*')['[' << double_ << ',' << double_ << ']'], 2.0, 4.3);
test_generator_attr("[2.0, 4.3] ",
 delimit[verbatim['[' << double_ << ','] << double_ << ']'], 2.0, 4.3);

Directives Controlling Case Sensitivity (upper[], lower[])

Description

The generator directives ns::lower[] and ns::upper[] force their embedded generators to emit lower case or upper case only
characters based on the interpretation of the generated characters in the character set defined by ns (see Character Encoding
Namespace).

255

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Header

// forwards to <boost/spirit/home/karma/directive/upper_lower_case.hpp>
#include <boost/spirit/include/karma_upper_lower_case.hpp>

Also, see Include Structure.

Namespace

Name

ns::lower

ns::upper

In the table above, ns represents a Character Encoding Namespace.

Model of

The model of lower[] and upper[] is the model of its subject generator.

Notation

a A generator object

A Attribute type of the generator a

ns A Character Encoding Namespace.

Expression Semantics

The lower[] and upper[] directives have no special generator semantics. They are pure modifier directives. They indirectly influence
the way all subject generators work. They add information (the tag::upper or tag::lower) to the Modifier template parameter
used while tranforming the proto::expr into the corresponding generator expression. This is achieved by the following specializ-
ations:

namespace boost { namespace spirit
{

template <typename CharEncoding>
struct is_modifier_directive<

 karma::domain
, tag::char_code<tag::lower, CharEncoding> >

: mpl::true_
{};

template <typename CharEncoding>
struct is_modifier_directive<

 karma::domain
, tag::char_code<tag::upper, CharEncoding> >

: mpl::true_
}}

(for more details see the section describing the compilation process of the Boost.Proto expression into the corresponding parser ex-
pressions).

256

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../doc/html/proto.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

SemanticsExpression

Generate a as lower case, interpreted in the character set defined by ns. The directive succeeds as long as
the embedded generator succeeded (unless the underlying output stream reports an error).

ns::lower[a]

Generate a as upper case, interpreted in the character set defined by ns. The directive succeeds as long as
the embedded generator succeeded (unless the underlying output stream reports an error).

ns::upper[a]

Note

If both directives are 'active' with regard to a generator, the innermost of those directives takes precedence. For in-
stance:

generate(sink, ascii::lower['A' << ascii::upper['b']])

will generate "aB" (without the quotes).

Further, the directives will have no effect on generators emitting characters not having an upper case or lower case
equivalent in the character set defined by ns.

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A --> ns:lower[a]: A
a: Unused --> ns:lower[a]: Un↵
used

ns:lower[a]

a: A --> ns:upper[a]: A
a: Unused --> ns:upper[a]: Un↵
used

ns:upper[a]

Complexity

The overall complexity of the generator directives ns::lower[] and ns::upper[] is defined by the complexity
of its embedded generators. The directives themselves are compile time only directives, having no impact on
runtime performance.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

257

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/spirit/include/karma.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::double_;
using boost::spirit::ascii::upper;
using boost::spirit::ascii::lower;

Basic usage of the upper and lower generator directives:

test_generator_attr("abc:2.0e-06", lower["ABC:" << double_], 2e-6);
test_generator_attr("ABC:2.0E-06", upper["abc:" << double_], 2e-6);

Controlling the Maximum Field Width (maxwidth[])

Description

The maxwidth[] directive allows to limit (truncate) the overall length of the output generated by the embedded generator.

Header

// forwards to <boost/spirit/home/karma/directive/maxwidth.hpp>
#include <boost/spirit/include/karma_maxwidth.hpp>

Also, see Include Structure.

Name

boost::spirit::maxwidth // alias: boost::spirit::karma::maxwidth

Model of

UnaryGenerator

Notation

a A generator object

A Attribute type of the generator a

num Numeric literal, any unsigned integer value, or a Lazy Argument that evaluates to an unsigned integer value

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryGenerator.

258

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

SemanticsExpression

Limit the overall length of the emitted output of the embedded generator (including characters generated
by automatic delimiting) to the number of characters as defined by the preprocessor constant
BOOST_KARMA_DEFAULT_FIELD_MAXWIDTH. Any additional output is truncated. The directive succeeds
as long as the embedded generator succeeded (unless the underlying output stream reports an error).

maxwidth[a]

Limit the overall length of the emitted output of the embedded generator (including characters generated
by automatic delimiting) to the number of characters as defined by num. Any additional output is trun-
cated. The directive succeeds as long as the embedded generator succeeded (unless the underlying output
stream reports an error).

maxwidth(num)[a]

Note

The maxwidth[] generator directive does not pad the generated output to fill the specified column width. If the
emitted output is shorter than the specified (or implied) column width, the generated output will be more narrow
than the column width.

If the output needs to always be equal to a specified column width, use one of the alignment directives left-
align[], center[], or right_align[], for instance:

maxwidth(8)[left_align(8)["1234"]]

which will output: "1234 " (without the quotes).

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A --> maxwidth[a]: A
a: Unused --> maxwidth[a]: Unused

maxwidth[a]

a: A --> maxwidth(num)[a]: A
a: Unused --> maxwidth(num)[a]: Un↵
used

maxwidth(num)[a]

Complexity

The overall complexity of the generator directive maxwidth[] is defined by the complexity of its embedded
generator. The complexity of the directive itself is O(N), where N is the number of characters generated by the
maxwidth directive.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

259

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/spirit/include/karma.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::double_;
using boost::spirit::karma::maxwidth;
using boost::spirit::karma::left_align;
using boost::spirit::karma::right_align;

Basic usage of maxwidth generator directive:

test_generator("01234", maxwidth(5)["0123456789"]);
test_generator(" 012", maxwidth(5)[right_align(12)["0123456789"]]);
test_generator("0123 ", maxwidth(8)[left_align(8)["0123"]]);

Temporary Output Buffering (buffer[])

Description

All generator components (except the Alternative (|) generator) pass their generated output directly to the underlying output stream.
If a generator fails halfway through, the output generated so far is not 'rolled back'. The buffering generator directive allows to avoid
this unwanted output to be generated. It temporarily redirects the output produced by the embedded generator into a buffer. This
buffer is flushed to the underlying stream only after the embedded generator succeeded, but is discarded otherwise.

Header

// forwards to <boost/spirit/home/karma/directive/buffer.hpp>
#include <boost/spirit/include/karma_buffer.hpp>

Also, see Include Structure.

Name

boost::spirit::buffer // alias: boost::spirit::karma::buffer

Model of

UnaryGenerator

Notation

a A generator object

A Attribute type of generator a

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryGenerator.

260

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

SemanticsExpression

The embedded generator a is invoked but its output is temporarily intercepted and stored in an internal buffer. If
a succeeds the buffer content is flushed to the underlying output stream, otherwise the buffer content is discarded.
The buffer directive succeeds as long as the embedded generator succeeded (unless the underlying output stream
reports an error).

buffer[a]

Tip

If you want to make the buffered generator succeed regardless of the outcome of the embedded generator, simply
wrap the buffer[a] into an additional optional: -buffer[a] (see Optional (unary -)).

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A --> buffer[a]: A
a: Unused --> buffer[a]: Un↵
used

buffer[a]

Complexity

The overall complexity of the buffering generator directive is defined by the complexity of its embedded generator.
The complexity of the buffering directive generator itself is O(N), where N is the number of characters buffered.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::double_;
using boost::spirit::karma::buffer;

Basic usage of a buffering generator directive. It shows how the partial output generated in the first example does not show up in
the generated output as the plus generator fails (no data is available, see Plus (unary +)).

261

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::vector<double> v; // empty container
test_generator_attr("", -buffer['[' << +double_ << ']'], v);

v.push_back(1.0); // now, fill the container
v.push_back(2.0);
test_generator_attr("[1.02.0]", buffer['[' << +double_ << ']'], v);

Consume Attribute (omit[])

Description

Consumes the attribute type of the embedded generator without generating any output.

Header

// forwards to <boost/spirit/home/karma/directive/omit.hpp>
#include <boost/spirit/include/karma_omit.hpp>

Also, see Include Structure.

Name

boost::spirit::omit // alias: boost::spirit::karma::omit

Model of

UnaryGenerator

Notation

a A generator object

A Attribute type of generator a

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryGenerator.

SemanticsExpression

The omit directive consumes the attribute type of the embedded generator A without generating any output. It
succeeds always.

omit[a]

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A --> omit[a]: A
a: Unused --> omit[a]: Un↵
used

omit[a]

262

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Complexity

The overall complexity of the omit generator directive is O(1) as it does not generate any output.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::double_;
using boost::spirit::karma::omit;

Basic usage of a omit generator directive. It shows how it consumes the first element of the provided attribute without generating
anything, leaving the second element of the attribute to the non-wrapped double_ generator.

std::pair<double, double> p (1.0, 2.0);
test_generator_attr("2.0", omit[double_] << double_, p);

Generally, this directive is helpful in situations, where the attribute type contains more information (elements) than need to be used
to generate the required output. Normally in such situations we would resolve to use semantic actions to explicitly pass the correct
parts of the overall attribute to the generators. The omit directive helps achieving the same without having to use semantic actions.

Consider the attribute type:

typedef fusion::vector<int, double, std::string> attribute_type;

where we need to generate output only from the first and last element:

typedef std::back_insert:iterator<std::string> iterator_type;

karma::rule<iterator_type, attribute_type()> r;
r = int_[_1 = phoenix::at_c<0>(_val)] << string[_1 = phoenix::at_c<2>(_val)];

std::string str;
iterator_type sink(str);
generate(sink, r, attribute_type(1, 2.0, "example")); // will generate: '1example'

This is error prone and not really readable. The same can be achieved by using the omit directive:

r = int_ << omit[double_] << string;

which is at the same time more readable and more efficient as we don't have to use semantic actions.

263

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Separate Output Into Columns (columns[])

Description

The columns[] directive separates the output emitted by the embedded generator by inserting special column separators.

Header

// forwards to <boost/spirit/home/karma/directive/columns.hpp>
#include <boost/spirit/include/karma_columns.hpp>

Also, see Include Structure.

Name

boost::spirit::columns // alias: boost::spirit::karma::columns

Model of

UnaryGenerator

Notation

a A generator object

g A generator object, or a Lazy Argument that evaluates to a generator object, will be used to emit column separators

A Attribute type of generator a
[num
Numeric literal, any unsigned integer value, or a Lazy Argument that evaluates to an unsigned integer value defining the number
of items to emit in between the column separators

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryGenerator.

SemanticsExpression

The columns directive invokes a generator after each N-th element of the embedded generator has
been emitted. The number of columns is defined by the preprocessor constant BOOST_KARMA_DE-
FAULT_COLUMNS. The column separator used will be karma::eol.

columns[a]

The columns directive invokes a generator after each N-th element of the embedded generator has
been emitted. The number of columns is defined by the argument to the directive num. The column
separator used will be karma::eol.

columns(num)[a]

The columns directive invokes a generator after each N-th element of the embedded generator has
been emitted. The number of columns is defined by the preprocessor constant BOOST_KARMA_DE-
FAULT_COLUMNS. The column separator used will be g.

columns(g)[a]

The columns directive invokes a generator after each N-th element of the embedded generator has
been emitted. The number of columns is defined by the argument to the directive num. The column
separator used will be g.

columns(num, g)[a]

Attributes

See Compound Attribute Notation.

264

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

AttributeExpression

a: A --> columns[a]: A
a: Unused --> columns[a]: Unused

columns[a]

a: A --> columns(num)[a]: A
a: Unused --> columns(num)[a]: Unused

columns(num)[a]

a: A --> columns(g)[a]: A
a: Unused --> columns(g)[a]: Unused

columns(g)[a]

a: A --> columns(num, g)[a]: A
a: Unused --> columns(num, g)[a]: Un↵
used

columns(num, g)[a]

Complexity

The overall complexity of the columns generator directive depends on the complexity of the embeddded generator.
The complexitz of the columns generator directive itself is O(N), where N is the number of inserted column sep-
arators.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::double_;
using boost::spirit::karma::columns;
using boost::spirit::karma::space;

Basic usage of the columns generators:

265

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::vector<double> v;
v.push_back(1.0);
v.push_back(2.0);
v.push_back(3.0);
test_generator_attr("1.0\n2.0\n3.0\n", columns(1)[*double_], v);
test_generator_attr_delim("1.0 2.0 \n3.0 \n", columns(2)[*double_], space, v);

Nonterminal

Module Headers

// forwards to <boost/spirit/home/karma/nonterminal.hpp>
#include <boost/spirit/include/karma_nonterminal.hpp>

Also, see Include Structure.

Rule

Description

The rule is a polymorphic generator that acts as a named place-holder capturing the behavior of a PEG expression assigned to it.
Naming a Parsing Expression Grammar expression allows it to be referenced later and makes it possible for the rule to call itself.
This is one of the most important mechanisms and the reason behind the word "recursive" in recursive descent output generation.

Header

// forwards to <boost/spirit/home/karma/nonterminal/rule.hpp>
#include <boost/spirit/include/karma_rule.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::karma::rule

Synopsis

template <typename OutputIterator, typename A1, typename A2, typename A3>
struct rule;

Template parameters

DefaultDescriptionParameter

noneThe underlying output iterator type that the rule is expected to work on.OutputIterator

See table below.Either Signature, Delimiter or Locals in any order. See table below.A1, A2, A3

Here is more information about the template parameters:

266

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DefaultDescriptionParameter

unused_type. When Signature defaults to
unused_type, the effect is the same as specify-
ing a signature of void() which is also equival-
ent to unused_type()

Specifies the rule's consumed (value to output) and inherited
(arguments) attributes. More on this here: Nonterminal.

Signature

unused_typeSpecifies the rule's delimiter generator. Specify this if you
want the rule to delimit the generated output.

Delimiter

unused_typeSpecifies the rule's local variables. See Nonterminal.Locals

Model of

Nonterminal

Notation

r, r2 Rules

g A generator expression

OutputIterator The underlying output iterator type that the rule is expected to work on.

A1, A2, A3 Either Signature, Delimiter or Locals in any order.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in Nonterminal.

DescriptionExpression

Rule declaration. OutputIterator is required. A1, A2, A3 are optional and
can be specified in any order. name is an optional string that gives the rule its
name, useful for debugging.

rule<OutputIterat↵
or, A1, A2, A3>
 r(name);

Copy construct rule r from rule r2.
rule<OutputIterat↵
or, A1, A2, A3>
 r(r2);

Assign rule r2 to r.r = r2;

Return an alias of r. The alias is a generator that holds a reference to r. Reference
semantics.

r.alias()

Get a copy of r.r.copy()

Rule definitionr = g;

Auto-rule definition. The attribute of g should be compatible with the consumed
attribute of r.

r %= g;

Attributes

The rule's generator attribute is RT: The consumed attribute of the rule. See Attribute

267

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Complexity

The complexity is defined by the complexity of the RHS generator, g

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::karma::rule;
using boost::spirit::karma::int_;
using boost::spirit::ascii::space;
using boost::spirit::ascii::space_type;

Basic rule:

rule<output_iterator_type> r;
r = int_(123);
test_generator("123", r);

Rule with consumed attribute:

rule<output_iterator_type, int()> ra;
ra = int_;
test_generator_attr("123", ra, 123);

Rule with delimiter and consumed attribute:

rule<output_iterator_type, std::vector<int>(), space_type> rs;
rs = *int_;
std::vector<int> v;
v.push_back(123);
v.push_back(456);
v.push_back(789);
test_generator_attr_delim("123 456 789", rs, space, v);

Grammar

Description

The grammar encapsulates a set of rules (as well as primitive generators (PrimitiveGenerator) and sub-grammars). The grammar
is the main mechanism for modularization and composition. Grammars can be composed to form more complex grammars.

Header

// forwards to <boost/spirit/home/karma/nonterminal/grammar.hpp>
#include <boost/spirit/include/karma_grammar.hpp>

Also, see Include Structure.

268

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Namespace

Name

boost::spirit::karma::grammar

Synopsis

template <typename OutputIterator, typename A1, typename A2, typename A3>
struct grammar;

Template parameters

DefaultDescriptionParameter

noneThe underlying output iterator type that the rule is expected to work on.OutputIterator

See table below.Either Signature, Delimiter or Locals in any order. See table below.A1, A2, A3

Here is more information about the template parameters:

DefaultDescriptionParameter

unused_type. When Signature defaults to
unused_type, the effect is the same as specify-
ing a signature of void() which is also equival-
ent to unused_type()

Specifies the grammar's synthesized (return value) and inherited
attributes (arguments). More on this here: Nonterminal.

Signature

unused_typeSpecifies the grammar's delimiter generator. Specify this if
you want the grammer to delimit the generated output.

Delimiter

unused_typeSpecifies the grammar's local variables. See Nonterminal.Locals

Model of

Nonterminal

Notation

g A grammar

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in Nonterminal.

269

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

SemanticsExpression

Grammar definition. name is an optional string that
gives the grammar its name, useful for debugging.

template <typename OutputIterator>
struct my_grammar : grammar<OutputIterator, A1, A2, A3>
{
 my_grammar() : my_grammar::base_type(start, name)

{
// Rule definitions

 start = /* ... */;
}

 rule<OutputIterator, A1, A2, A3> start;
// more rule declarations...

};

Note

The template parameters of a grammar and its start rule (the rule passed to the grammar's base class constructor)
must match, otherwise you will see compilation errors.

Attributes

The generator attribute of the grammar is RT, its consumed attribute. See Attribute

Complexity

The complexity is defined by the complexity of the its definition.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some using declarations:

using boost::spirit::ascii::space_type;
using boost::spirit::ascii::space;
using boost::spirit::int_;
using boost::spirit::karma::grammar;
using boost::spirit::karma::rule;

Basic grammar usage:

270

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct num_list : grammar<output_iterator_type, space_type, std::vector<int>()>
{
 num_list() : base_type(start)

{
using boost::spirit::int_;

 num = int_;
 start = num << *(',' << num);

}

 rule<output_iterator_type, space_type, std::vector<int>()> start;
 rule<output_iterator_type, space_type, int()> num;
};

How to use the example grammar:

num_list nlist;
std::vector<int> v;
v.push_back(123);
v.push_back(456);
v.push_back(789);
test_generator_attr_delim("123 , 456 , 789", nlist, space, v);

Numeric

The library includes a couple of predefined objects for generating booleans, signed and unsigned integers, and real numbers. These
generators are fully parametric. Most of the important aspects of numeric generation can be finely adjusted to suit. This includes the
radix base, the exponent, the fraction etc. Policies control the real number generators' behavior. There are some predefined policies
covering the most common real number formats but the user can supply her own when needed.

The numeric parsers are fine tuned (employing loop unrolling and extensive template metaprogramming) with exceptional performance
that rivals the low level C functions such as ltoa, ssprintf, and _gcvt. Benchmarks reveal up to 2X speed over the C counterparts
(see here: Performance of Numeric Generators). This goes to show that you can write extremely tight generic C++ code that rivals,
if not surpasses C.

Module Header

// forwards to <boost/spirit/home/karma/numeric.hpp>
#include <boost/spirit/include/karma_numeric.hpp>

Also, see Include Structure.

Unsigned Integer Number Generators (uint_, etc.)

Description

The uint_generator class is the simplest among the members of the numerics package. The uint_generator can generate unsigned
integers of arbitrary length and size. The uint_generator generator can be used to generate ordinary primitive C/C++ integers or
even user defined scalars such as bigints (unlimited precision integers) if the type follows certain expression requirements (for more
information about the requirements, see below)). The uint_generator is a template class. Template parameters fine tune its beha-
vior.

Header

// forwards to <boost/spirit/home/karma/numeric/uint.hpp>
#include <boost/spirit/include/karma_uint.hpp>

Also, see Include Structure.

271

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Namespace

Name

boost::spirit::lit // alias: boost::spirit::karma::lit

boost::spirit::bin // alias: boost::spirit::karma::bin

boost::spirit::oct // alias: boost::spirit::karma::oct

boost::spirit::hex // alias: boost::spirit::karma::hex

boost::spirit::ushort_ // alias: boost::spirit::karma::ushort_

boost::spirit::ulong_ // alias: boost::spirit::karma::ulong_

boost::spirit::uint_ // alias: boost::spirit::karma::uint_

boost::spirit::ulong_long // alias: boost::spirit::karma::ulong_long

Important

The generators ulong_long and ulong_long(num) are only available on platforms where the preprocessor constant
BOOST_HAS_LONG_LONG is defined (i.e. on platforms having native support for unsigned long long (64 bit)
unsigned integer types).

Note

lit is reused by the String Generators, the Character Generators, and the Numeric Generators. In general, a char
generator is created when you pass in a character, a string generator is created when you pass in a string, and a nu-
meric generator is created when you use a numeric literal.

Synopsis

template <
typename Num

, unsigned Radix>
struct uint_generator;

Template parameters

DefaultDescriptionParameter

unsigned intThe numeric base type of the numeric generator.Num

10The radix base. This can be either 2: binary, 8: octal, 10: decimal and 16: hexadecimal.Radix

Model of

PrimitiveGenerator

Notation

num Numeric literal, any unsigned integer value, or a Lazy Argument that evaluates to an unsigned integer value of type Num

272

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Num Type of num: any unsigned integer type, or in case of a Lazy Argument, its return value

Radix An integer literal specifying the required radix for the output conversion. Valid values are 2, 8, 10, and 16.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveGenerator.

SemanticsExpression

Generate the unsigned integer literal num using the default formatting (radix is 10). This generator never
fails (unless the underlying output stream reports an error).

lit(num)

Generate the unsigned integer provided by a mandatory attribute using the default formatting (radix is 10).
This generator never fails (unless the underlying output stream reports an error).

ushort
uint
ulong
ulong_long

Generate the unsigned integer provided by the immediate literal value the generator is initialized from
using the default formatting (radix is 10). If this generator has an associated attribute it succeeds only if
the attribute is equal to the immediate literal (unless the underlying output stream reports an error). Otherwise
this generator fails and does not generate any output.

ushort(num)
uint(num)
ulong(num)
ulong_long(num)

Generate the unsigned integer provided by a mandatory attribute using the default formatting and the cor-
responding radix (bin: radix is 2, oct: radix is 8, hex: radix is 16). This generator never fails (unless the
underlying output stream reports an error).

bin
oct
hex

Generate the unsigned integer provided by the immediate literal value the generator is initialized from
using the default formatting and the corresponding radix (bin: radix is 2, oct: radix is 8, hex: radix is
16). If this generator has an associated attribute it succeeds only if the attribute is equal to the immediate
literal (unless the underlying output stream reports an error). Otherwise this generator fails and does not
generate any output.

bin(num)
oct(num)
hex(num)

All generators listed in the table above (except lit(num)) are predefined specializations of the uint_generator<Num, Radix>
basic unsigned integer number generator type described below. It is possible to directly use this type to create unsigned integer
generators using a wide range of formatting options.

SemanticsExpression

Generate the unsigned integer of type Num provided by a mandatory attribute using the specified Radix
(possible values are 2, 8, 10, and 16, the default value is 10).This generator never fails (unless the under-
lying output stream reports an error).

uint_generat↵
or<
 ↵
 Num, Radix
>()

Generate the unsigned integer of type Num provided by the immediate literal value the generator is initialized
from, using the specified Radix (possible values are 2, 8, 10, and 16, the default value is 10). If this
generator has an associated attribute it succeeds only if the attribute is equal to the immediate literal (unless
the underlying output stream reports an error). Otherwise this generator fails and does not generate any
output.

uint_generat↵
or<
 ↵
 Num, Radix
>()(num)

273

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Additional Requirements

The following lists enumerate the requirements which must be met in order to use a certain type Num to instantiate and use a
uint_generator<Num, Radix>.

If boost::is_integral<Num>::value is true the type Num must have defined:

• comparison operators for: <, <=, ==, !=, >, and >=

• numeric operators for: +, -, /, *, and %

If boost::is_integral<Num>::value is false the type Num must have defined:

• comparison operators for: <, <=, ==, !=, >, and >=

• numeric operators for: +, -, /, *, and %

• helper functions implementing the interface and the semantics of: std::fmod, std::pow, std::lround, std::ltrunc,
std::floor, and std::ceil. These need to be defined in a way so that they will be found using argument dependent lookup
(ADL).

274

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Attributes

AttributeExpression

unusedlit(num)

unsigned short, attribute is mandatory (otherwise compilation will fail)ushort

unsigned short, attribute is optional, if it is supplied, the generator compares the attribute with num
and succeeds only if both are equal, failing otherwise.

ushort(num)

unsigned int, attribute is mandatory (otherwise compilation will fail)uint

unsigned int, attribute is optional, if it is supplied, the generator compares the attribute with num and
succeeds only if both are equal, failing otherwise.

uint(num)

unsigned long, attribute is mandatory (otherwise compilation will fail)ulong

unsigned long, attribute is optional, if it is supplied, the generator compares the attribute with num
and succeeds only if both are equal, failing otherwise.

ulong(num)

unsigned long long, attribute is mandatory (otherwise compilation will fail)ulong_long

unsigned long long, attribute is optional, if it is supplied, the generator compares the attribute with
num and succeeds only if both are equal, failing otherwise.

ulong_long(num)

unsigned int, attribute is mandatory (otherwise compilation will fail)
bin
oct
hex

unsigned int, attribute is optional, if it is supplied, the generator compares the attribute with num and
succeeds only if both are equal, failing otherwise.

bin(num)
oct(num)
hex(num)

Num, attribute is mandatory (otherwise compilation will fail)
uint_generat↵
or<
 Num, Radix
>()

Num, attribute is optional, if it is supplied, the generator compares the attribute with num and succeeds
only if both are equal, failing otherwise.

uint_generat↵
or<
 Num, Radix
>()(num)

Note

In addition to their usual attribute of type Num all listed generators accept an instance of a boost::optional<Num>
as well. If the boost::optional<> is initialized (holds a value) the generators behave as if their attribute was an
instance of Num and emit the value stored in the boost::optional<>. Otherwise the generators will fail.

275

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Complexity

O(N), where N is the number of digits needed to represent the generated integer number

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::uint_;
using boost::spirit::karma::lit;

Basic usage of an uint generator:

test_generator("2", lit(2U));
test_generator("2", uint_(2));
test_generator_attr("2", uint_(2), 2);
test_generator_attr("", uint_(2), 3); // fails (as 2 != 3)!
test_generator_attr("2", uint_, 2);

Signed Integer Number Generators (int_, etc.)

Description

The int_generator can generate signed integers of arbitrary length and size. This is almost the same as the uint_generator.
The only difference is the additional task of generating the '+' or '-' sign preceding the number. The class interface is the same
as that of the uint_generator.

The int_generator generator can be used to emit ordinary primitive C/C++ integers or even user defined scalars such as bigints
(unlimited precision integers) if the type follows certain expression requirements (for more information about the requirements, see
below).

Header

// forwards to <boost/spirit/home/karma/numeric/int.hpp>
#include <boost/spirit/include/karma_int.hpp>

Also, see Include Structure.

276

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Namespace

Name

boost::spirit::lit // alias: boost::spirit::karma::lit

boost::spirit::short_ // alias: boost::spirit::karma::short_

boost::spirit::int_ // alias: boost::spirit::karma::int_

boost::spirit::long_ // alias: boost::spirit::karma::long_

boost::spirit::long_long // alias: boost::spirit::karma::long_long

Important

The generators long_long and long_long(num) are only available on platforms where the preprocessor constant
BOOST_HAS_LONG_LONG is defined (i.e. on platforms having native support for long long (64 bit) integer types).

Note

lit is reused by the String Generators, the Character Generators, and the Numeric Generators. In general, a char
generator is created when you pass in a character, a string generator is created when you pass in a string, and a nu-
meric generator is created when you use a numeric literal.

Synopsis

template <
typename T

, unsigned Radix
, bool force_sign>

struct int_generator;

Template parameters

DefaultDescriptionParameter

intThe numeric base type of the numeric parser.T

10The radix base. This can be either 2: binary, 8: octal, 10: decimal and 16: hexadecimal.Radix

falseIf true, all numbers will have a sign (space for zero)force_sign

Model of

PrimitiveGenerator

Notation

num Numeric literal, any signed integer value, or a Lazy Argument that evaluates to a signed integer value of type Num

Num Type of num: any signed integer type

Radix A constant integer literal specifying the required radix for the output conversion. Valid values are 2, 8, 10, and 16.

277

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

force_sign A constant boolean literal specifying whether the generated number should always have a sign ('+' for positive
numbers, '-' for negative numbers and a ' ' for zero).

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveGenerator.

SemanticsExpression

Generate the integer literal num using the default formatting (radix is 10, sign is only printed for negative
literals). This generator never fails (unless the underlying output stream reports an error).

lit(num)

Generate the integer provided by a mandatory attribute using the default formatting (radix is 10, sign is only
printed for negative literals). This generator never fails (unless the underlying output stream reports an error).

short_
int_
long_
long_long

Generate the integer provided by the immediate literal value the generator is initialized from using the default
formatting (radix is 10, sign is only printed for negative literals). If this generator has an associated attribute
it succeeds only if the attribute is equal to the immediate literal (unless the underlying output stream reports
an error). Otherwise this generator fails and does not generate any output.

short_(num)
int_(num)
long_(num)
long_long(num)

All generators listed in the table above (except lit(num)) are predefined specializations of the int_generator<Num, Radix,
force_sign> basic integer number generator type described below. It is possible to directly use this type to create integer generators
using a wide range of formatting options.

SemanticsExpression

Generate the integer of type Num provided by a mandatory attribute using the specified Radix
(possible values are 2, 8, 10, and 16, the default value is 10). If force_sign is false (the
default), a sign is only printed for negative literals. If force_sign is true, all numbers will
be printed using a sign, i.e. '-' for negative numbers, '+' for positive numbers, and ' ' for
zeros. This generator never fails (unless the underlying output stream reports an error).

int_generator<
 ↵
 Num, Radix, force_sign
>()

Generate the integer of type Num provided by the immediate literal value the generator is initial-
ized from, using the specified Radix (possible values are 2, 8, 10, and 16, the default value is
10). If force_sign is false (the default), a sign is only printed for negative literals. If
force_sign is true, all numbers will be printed using a sign, i.e. '-' for negative numbers,
'+' for positive numbers, and ' ' for zeros. If this generator has an associated attribute it
succeeds only if the attribute is equal to the immediate literal (unless the underlying output
stream reports an error). Otherwise this generator fails and does not generate any output.

int_generator<
 ↵
 Num, Radix, force_sign
>()(num)

Additional Requirements

The following lists enumerate the requirements which must be met in order to use a certain type Num to instantiate and use a
int_generator<Num, Radix, force_sign>.

If boost::is_integral<Num>::value is true the type Num must have defined:

• comparison operators for: <, <=, ==, !=, >, and >=

• numeric operators for: +, -, /, *, %, and unary -

If boost::is_integral<Num>::value is false the type Num must have defined:

278

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• comparison operators for: <, <=, ==, !=, >, and >=

• numeric operators for: +, -, /, *, %, and unary -

• helper functions implementing the interface and the semantics of: std::fmod, std::fabs, std::pow, std::lround,
std::ltrunc, std::floor, and std::ceil. These need to be defined in a way so that they will be found using argument de-
pendent lookup (ADL).

Attributes

AttributeExpression

unusedlit(num)

short, attribute is mandatory (otherwise compilation will fail)short_

short, attribute is optional, if it is supplied, the generator compares the attribute with num
and succeeds only if both are equal, failing otherwise.

short_(num)

int, attribute is mandatory (otherwise compilation will fail)int_

int, attribute is optional, if it is supplied, the generator compares the attribute with num
and succeeds only if both are equal, failing otherwise.

int_(num)

long, attribute is mandatory (otherwise compilation will fail)long_

long, attribute is optional, if it is supplied, the generator compares the attribute with num
and succeeds only if both are equal, failing otherwise.

long_(num)

long long, attribute is mandatory (otherwise compilation will fail)long_long

long long, attribute is optional, if it is supplied, the generator compares the attribute with
num and succeeds only if both are equal, failing otherwise.

long_long(num)

Num, attribute is mandatory (otherwise compilation will fail)
int_generator<
 ↵
 Num, Radix, force_sign
>()

Num, attribute is optional, if it is supplied, the generator compares the attribute with num
and succeeds only if both are equal, failing otherwise.

int_generator<
 ↵
 Num, Radix, force_sign
>()(num)

Note

In addition to their usual attribute of type Num all listed generators accept an instance of a boost::optional<Num>
as well. If the boost::optional<> is initialized (holds a value) the generators behave as if their attribute was an
instance of Num and emit the value stored in the boost::optional<>. Otherwise the generators will fail.

Complexity

O(N), where N is the number of digits needed to represent the generated integer number

279

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::int_;
using boost::spirit::karma::lit;

Basic usage of an int_ generator:

test_generator("-2", lit(-2));
test_generator("-2", int_(-2));
test_generator_attr("-2", int_(-2), -2);
test_generator_attr("", int_(-2), 3); // fails (as -2 != 3)!
test_generator_attr("-2", int_, -2);

Real Number Generators (float_, double_, etc.)

Description

The real_generator can generate real numbers of arbitrary length and size limited by its template parameter, Num. The numeric
base type Num can be a user defined numeric type such as fixed_point (fixed point reals) and bignum (unlimited precision numbers)
if the type follows certain expression requirements (for more information about the requirements, see below).

Header

// forwards to <boost/spirit/home/karma/numeric/real.hpp>
#include <boost/spirit/include/karma_real.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::lit // alias: boost::spirit::karma::lit

boost::spirit::float_ // alias: boost::spirit::karma::float_

boost::spirit::double_ // alias: boost::spirit::karma::double_

boost::spirit::long_double // alias: boost::spirit::karma::long_double

280

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

lit is reused by the String Generators, the Character Generators, and the Numeric Generators. In general, a char
generator is created when you pass in a character, a string generator is created when you pass in a string, and a nu-
meric generator is created when you use a numeric literal.

Synopsis

template <typename Num, typename RealPolicies>
struct real_generator;

Template parameters

DefaultDescriptionParameter

doubleThe type of the real number to generate.Num

real_policies<Num>The policies to use while converting the real number.RealPolicies

For more information about the type RealPolicies see below.

Model of

PrimitiveGenerator

Notation

num Numeric literal, any real number value, or a Lazy Argument that evaluates to a real number value of type Num

Num Type of num: any real number type

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveGenerator.

SemanticsExpression

Generate the real number literal num using the default formatting (no trailing zeros, fixed representation
for numbers fabs(n) <= 1e5 && fabs(n) > 1e-3, scientific representation otherwise, 3 fractional
digits, sign is only printed for negative literals). This generator never fails (unless the underlying output
stream reports an error).

lit(num)

Generate the real number provided by a mandatory attribute using the default formatting (no trailing
zeros, fixed representation for numbers fabs(n) <= 1e5 && fabs(n) > 1e-3, scientific represent-
ation otherwise, 3 fractional digits, sign is only printed for negative literals). This generator never fails
(unless the underlying output stream reports an error).

float_
double_
long_double

Generate the real point number provided by the immediate literal value the generator is initialized from
using the default formatting (no trailing zeros, fixed representation for numbers fabs(n) <= 1e5 &&
fabs(n) > 1e-3, scientific representation otherwise, 3 fractional digits, sign is only printed for negative
literals). If this generator has an associated attribute it succeeds only if the attribute is equal to the imme-
diate literal (unless the underlying output stream reports an error). Otherwise this generator fails and does
not generate any output.

float_(num)
double_(num)
long_double(num)

281

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

All generators listed in the table above (except lit(num)) are predefined specializations of the real_generator<Num, Real-
Policies> basic real number generator type described below. It is possible to directly use this type to create real number generators
using a wide range of formatting options.

SemanticsExpression

Generate the real number of type Num provided by a mandatory attribute using the specified
RealPolicies. This generator never fails (unless the underlying output stream reports an error).

real_generator<
 Num, Real↵
Policies
>()

Generate the real number of type Num provided by the immediate literal value the generator is
initialized from using the specified RealPolicies. If this generator has an associated attribute
it succeeds only if the attribute is equal to the immediate literal (unless the underlying output
stream reports an error). Otherwise this generator fails and does not generate any output.

real_generator<
 Num, Real↵
Policies
>()(num)

Additional Requirements

The following list enumerates the requirements which must be met in order to use a certain type Num to instantiate a real_gener-
ator<Num, Policies>.

In order to be usable as the first template parameter for real_generator<> the type Num must have defined:

• comparison operators for: <, <=, ==, !=, >, and >=

• numeric operators for: +, -, /, *, and %

• functions implementing the interface and the semantics of: std::fmod, std::pow, std::log10, std::lround, std::ltrunc,
std::modf, std::floor, and std::ceil. These need to be defined in a way so that they will be found using argument dependent
lookup (ADL).

• a valid specialization of the type std::numeric_limits<Num> allowing for numeric property inspection.

282

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Attributes

AttributeExpression

unusedlit(num)

float, attribute is mandatory (otherwise compilation will fail)float_

float_, attribute is optional, if it is supplied, the generator compares the attribute with num and succeeds
only if both are equal, failing otherwise.

float_(num)

double, attribute is mandatory (otherwise compilation will fail)double_

double, attribute is optional, if it is supplied, the generator compares the attribute with num and succeeds
only if both are equal, failing otherwise.

double_(num)

long double, attribute is mandatory (otherwise compilation will fail)long_double

long double, attribute is optional, if it is supplied, the generator compares the attribute with num and
succeeds only if both are equal, failing otherwise.

long_double(num)

Num, attribute is mandatory (otherwise compilation will fail)
real_generator<
 ↵
 Num, Policies
>()

Num, attribute is optional, if it is supplied, the generator compares the attribute with num and succeeds
only if both are equal, failing otherwise.

real_generator<
 ↵
 Num, Policies
>()(num)

Note

In addition to their usual attribute of type Num all listed generators accept an instance of a boost::optional<Num>
as well. If the boost::optional<> is initialized (holds a value) the generators behave as if their attribute was an
instance of Num and emit the value stored in the boost::optional<>. Otherwise the generators will fail.

Real Number Formatting Policies

If special formatting of a real number is needed, overload the policy class real_policies<Num> and use it as a template parameter
to the real_generator<> real number generator. For instance:

283

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// define a new real number formatting policy
template <typename Num>
struct scientific_policy : real_policies<Num>
{

// we want the numbers always to be in scientific format
static int floatfield(Num n) { return fmtflags::scientific; }

};

// define a new generator type based on the new policy
typedef real_generator<double, scientific_policy<double> > science_type;
science_type const scientific = science_type();

// use the new generator
generate(sink, science_type(), 1.0); // will output: 1.0e00
generate(sink, scientific, 0.1); // will output: 1.0e-01

The template parameter Num should be the type to be formatted using the overloaded policy type. At the same time Num will be used
as the attribute type of the created real number generator.

Real Number Formatting Policy Expression Semantics

A real number formatting policy should expose the following variables and functions:

284

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionExpression

This is the main function used to generate the output for a real number. It is called
by the real generator in order to perform the conversion. In theory all of the work

template <typename Inserter
, typename OutputIterator
, typename Policies>

bool call (OutputIterat↵
or& sink, Num n
, Policies const& p);

can be implemented here, but the easiest way is to use existing functionality provided
by the type specified by the template parameter Inserter. The default implement-
ation of this functions is:

template <typename Inserter, typename OutputIterator
, typename Policies>

static bool
call (OutputIterator& sink, Num n, Policies const& p)
{

return Inserter::call_n(sink, n, p);
}

sink is the output iterator to use for generation

n is the real number to convert

p is the instance of the policy type used to instantiate this real number generator.

The default behavior is to not to require generating a sign. If the function
force_sign() returns true, then all generated numbers will have a sign ('+' or '-
', zeros will have a space instead of a sign).

bool force_sign(Num n);

n is the real number to output. This can be used to adjust the required behavior de-
pending on the value of this number.

Return whether trailing zero digits have to be emitted in the fractional part of the
output. If set, this flag instructs the real number generator to emit trailing zeros up
to the required precision digits (as returned by the precision() function).

bool trailing_zeros(Num n);

n is the real number to output. This can be used to adjust the required behavior de-
pending on the value of this number.

Decide, which representation type to use in the generated output.
int floatfield(Num n);

By default all numbers having an absolute value of zero or in between 0.001 and
100000 will be generated using the fixed format, all others will be generated using
the scientific representation.

The trailing_zeros() can be used to force the output of trailing zeros in the
fractional part up to the number of digits returned by the precision() member
function. The default is not to generate the trailing zeros.

n is the real number to output. This can be used to adjust the formatting flags depend-
ing on the value of this number.

The return value has to be either fmtflags::scientific (generate real number
values in scientific notation) or fmtflags::fixed (generate real number values in
fixed-point notation).

285

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionExpression

Return the maximum number of decimal digits to generate in the fractional part of
the output.

n is the real number to output. This can be used to adjust the required precision de-
pending on the value of this number. If the trailing zeros flag is specified the fractional
part of the output will be 'filled' with zeros, if appropriate.

Note: If the trailing_zeros flag is not in effect additional semantics apply. See the
description for the fraction_part() function below. Moreover, this precision will
be limited to the value of std::numeric_limits<T>::digits10 + 1.

unsigned precision(Num n);

This function is called to generate the integer part of the real number.

sink is the output iterator to use for generation

n is the absolute value of the integer part of the real number to convert (always non-
negative)

sign is the sign of the overall real number to convert.

force_sign is a flag indicating whether a sign has to be generated even for non-
negative numbers (this is the same as has been returned from the function
force_sign() described above)

The return value defines the outcome of the whole generator. If it is false, no further
output is generated, immediately returning false from the calling real_generator
as well. If it is true, normal output generation continues.

template <bool ForceSign,
typename OutputIterator>

bool integer_part(OutputIter↵
ator& sink
, Num ↵

n, bool sign, bool force_sign);

This function is called to generate the decimal point.

sink is the output iterator to use for generation

n is the fractional part of the real number to convert. Note that this number is scaled
such, that it represents the number of units which correspond to the value returned
from the precision() function earlier. I.e. a fractional part of 0.01234 is repres-
ented as 1234 when the function precision() returned 5.

precision is the number of digits to emit as returned by the function precision()
described above

This is given to allow to decide, whether a decimal point has to be generated at all.

Note: If the trailing_zeros flag is not in effect additional comments apply. See
the description for the fraction_part() function below.

The return value defines the outcome of the whole generator. If it is false, no further
output is generated, immediately returning false from the calling real_generator
as well. If it is true, normal output generation continues.

template <typename OutputIter↵
ator>
bool dot(OutputIterat↵
or& sink, Num n,
unsigned precision);

286

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionExpression

This function is called to generate the fractional part of the number.

sink is the output iterator to use for generation

n is the fractional part of the real number to convert. Note that this number is scaled
such, that it represents the number of units which correspond to the value returned
from the precision() function earlier. I.e. a fractional part of 0.01234 is repres-
ented as 1234 when the function precision() returned 5.

adjprec is the corrected number of digits to emit (see note below)

precision is the number of digits to emit as returned by the function precision()
described above

Note: If trailing_zeros() returns false the adjprec parameter will have been
corrected from the value the precision() function returned earlier (defining the
maximal number of fractional digits) in the sense, that it takes into account trailing
zeros. I.e. a real number 0.0123 and a value of 5 returned from precision() will
result in:

trailing_zeros() returned false: n will be 123, and adjprec will be 4 (as we
need to print 0123)

trailing_zeros() returned true: n will be 1230, and adjprec will be 5 (as we
need to print 01230)

The missing preceding zeros in the fractional part have to be supplied by the imple-
mentation of this policy function.

The return value defines the outcome of the whole generator. If it is false, no further
output is generated, immediately returning false from the calling real_generator
as well. If it is true, normal output generation continues.

template <typename OutputIter↵
ator>
bool fraction_part(OutputIter↵
ator& sink, Num n
, unsigned adjprec, un↵

signed precision);

This function is called to generate the exponential part of the number (this is called
only if the floatfield() function returned the fmtflags::scientific flag).

sink is the output iterator to use for generation

n is the (signed) exponential part of the real number to convert.

The template parameters CharEncoding and Tag are either of the type unused_type
or describe the character class and conversion to be applied to any output possibly
influenced by either the lower[] or upper[] directives.

The return value defines the outcome of the whole generator. If it is false, no further
output is generated, immediately returning false from the calling real_generator
as well. If it is true, normal output generation continues.

template <typename CharEncod↵
ing,

typename Tag, typename Out↵
putIterator>
bool exponent(
 OutputIterat↵
or& sink, long n);

287

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionExpression

This function is called whenever the number to print is a non-normal real number of
type NaN.

sink is the output iterator to use for generation

n is the (signed) real number to convert

force_sign is a flag indicating whether a sign has to be generated even for non-
negative numbers (this is the same as has been returned from the function
force_sign() described above)

The template parameters CharEncoding and Tag are either of the type unused_type
or describe the character class and conversion to be applied to any output possibly
influenced by either the lower[] or upper[] directives.

The return value defines the outcome of the whole generator. If it is false, no further
output is generated, immediately returning false from the calling real_generator
as well. If it is true, normal output generation continues.

template <typename CharEncod↵
ing
 , typename Tag, typename Out↵
putIterator>
bool nan (OutputIterat↵
or& sink, Num n
, bool force_sign);

This function is called whenever the number to print is a non-normal real number of
type Inf.

sink is the output iterator to use for generation

n is the (signed) real number to convert

force_sign is a flag indicating whether a sign has to be generated even for non-
negative numbers (this is the same as has been returned from the function
force_sign() described above)

The template parameters CharEncoding and Tag are either of the type unused_type
or describe the character class and conversion to be applied to any output possibly
influenced by either the lower[] or upper[] directives.

The return value defines the outcome of the whole generator. If it is false, no further
output is generated, immediately returning false from the calling real_generator
as well. If it is true, normal output generation continues.

template <typename CharEncod↵
ing
 , typename Tag, typename Out↵
putIterator>
bool inf (OutputIterat↵
or& sink, Num n
, bool force_sign);

Tip

The easiest way to implement a proper real number formatting policy is to derive a new type from the the type
real_policies<> while overriding the aspects of the formatting which need to be changed.

Complexity

O(N), where N is the number of digits needed to represent the generated real number.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

288

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::double_;
using boost::spirit::karma::lit;

Basic usage of an double_ generator:

test_generator("2.0", lit(2.0));
test_generator("2.0", double_(2));
test_generator_attr("2.0", double_(2.0), 2.0);
test_generator_attr("", double_(2.0), 3.0); // fails (as 2.0 != 3.0)!
test_generator_attr("-2.0", double_, -2.0);

test_generator_attr("1.234e05", double_, 1234.0e2);
test_generator_attr("1.234e-06", double_, 0.000001234);

Boolean Generators (bool_)

Description

As you might expect, the bool_generator can generate output from boolean values. The bool_generator generator can be used
to generate output from ordinary primitive C/C++ bool values or user defined boolean types if the type follows certain expression
requirements (for more information about the requirements, see below)). The bool_generator is a template class. Template
parameters fine tune its behavior.

Header

// forwards to <boost/spirit/home/karma/numeric/bool.hpp>
#include <boost/spirit/include/karma_bool.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::lit // alias: boost::spirit::karma::lit

boost::spirit::bool_ // alias: boost::spirit::karma::bool_

boost::spirit::true_ // alias: boost::spirit::karma::true_

boost::spirit::false_ // alias: boost::spirit::karma::false_

289

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

lit is reused by the String Generators, the Character Generators, and the Numeric Generators. In general, a char
generator is created when you pass in a character, a string generator is created when you pass in a string, and a nu-
meric generator is created when you use a numeric (boolean) literal.

Synopsis

template <
typename B

, unsigned Policies>
struct bool_generator;

Template parameters

DefaultDescriptionParameter

boolThe boolean base type of the boolean generator.B

bool_policiesThe policies to use while converting the boolean.Policies

Model of

PrimitiveGenerator

Notation

b Boolean literal, or a Lazy Argument that evaluates to a boolean value of type B

B Type of b: any type usable as a boolean, or in case of a Lazy Argument, its return value

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveGenerator.

SemanticsExpression

Generate the boolean literal b using the default formatting (false is generated as "false", and true is generated
as "true"). This generator never fails (unless the underlying output stream reports an error).

lit(b)

Generate the boolean value provided by a mandatory attribute using the default formatting (false is generated
as "false", and true is generated as "true"). This generator never fails (unless the underlying output stream
reports an error).

bool_

Generate the booelan value provided by the immediate literal value the generator is initialized from using the
default formatting (false is generated as "false", and true is generated as "true"). If this generator has an
associated attribute it succeeds only if the attribute is equal to the immediate literal (unless the underlying output
stream reports an error). Otherwise this generator fails and does not generate any output.

bool_(b)

Generate "true". If this generator has an associated attribute it succeeds only if the attribute is true as well
(unless the underlying output stream reports an error).

true_

Generate "false". If this generator has an associated attribute it succeeds only if the attribute is false as well
(unless the underlying output stream reports an error).

false_

290

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

All generators listed in the table above (except lit(num)) are predefined specializations of the bool_generator<B, Policies>
basic boolean generator type described below. It is possible to directly use this type to create boolean generators using a wide range
of formatting options.

SemanticsExpression

Generate the boolean of type B provided by a mandatory attribute using the specified Policies This
generator never fails (unless the underlying output stream reports an error).

bool_generat↵
or<
 ↵
 B, Policies
>()

Generate the boolean of type B provided by the immediate literal value the generator is initialized from,
using the specified Policies. If this generator has an associated attribute it succeeds only if the attribute
is equal to the immediate literal (unless the underlying output stream reports an error). Otherwise this
generator fails and does not generate any output.

bool_generat↵
or<
 ↵
 B, Policies
>()(b)

Note

All boolean generators properly respect the upper and lower directives.

Additional Requirements

The following lists enumerate the requirements which must be met in order to use a certain type B to instantiate and use a
bool_generator<B, Policies>.

The type B:

• must be (safely) convertible to bool

291

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Attributes

AttributeExpression

unusedbool_(b)

bool, attribute is mandatory (otherwise compilation will fail)bool_

bool, attribute is optional, if it is supplied, the generator compares the attribute with b and succeeds only
if both are equal, failing otherwise.

bool_(b)

B, attribute is mandatory (otherwise compilation will fail)
bool_generat↵
or<
 ↵
 B, Policies
>()

B, attribute is optional, if it is supplied, the generator compares the attribute with b and succeeds only if
both are equal, failing otherwise.

bool_generat↵
or<
 ↵
 B, Policies
>()(b)

Note

In addition to their usual attribute of type B all listed generators accept an instance of a boost::optional as
well. If the boost::optional<> is initialized (holds a value) the generators behave as if their attribute was an
instance of B and emit the value stored in the boost::optional<>. Otherwise the generators will fail.

Boolean Formatting Policies

If special formatting of a boolean is needed, overload the policy class bool_policies and use it as a template parameter to
the bool_generator<> boolean generator. For instance:

struct special_bool_policy : karma::bool_policies<>
{

template <typename CharEncoding, typename Tag
, typename OutputIterator>

static bool generate_false(OutputIterator& sink, bool b)
{

// we want to spell the names of false as eurt (true backwards)
return string_inserter<CharEncoding, Tag>::call(sink, "eurt");

}
};

typedef karma::bool_generator<special_bool_policy> backwards_bool_type;
backwards_bool_type const backwards_bool;

karma::generate(sink, backwards_bool, true); // will output: true
karma::generate(sink, backwards_bool(false)); // will output: uert

The template parameter B should be the type to be formatted using the overloaded policy type. At the same time B will be used as
the attribute type of the created real number generator. The default for B is bool.

292

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Booelan Formatting Policy Expression Semantics

A boolean formatting policy should expose the following:

DescriptionExpression

This is the main function used to generate the output for a boolean. It is called by
the boolean generator in order to perform the conversion. In theory all of the work
can be implemented here, but the easiest way is to use existing functionality provided
by the type specified by the template parameter Inserter. The default implement-
ation of this functions is:

template <typename Inserter, typename OutputIterator
, typename Policies>

static bool
call (OutputIterator& sink, B b, Policies const& p)
{

return Inserter::call_n(sink, b, p);
}

sink is the output iterator to use for generation

b is the boolean to convert

p is the instance of the policy type used to instantiate this real number generator.

template <typename Inserter
, typename OutputIterator
, typename Policies>

bool call (OutputIterat↵
or& sink, Num n
, Policies const& p);

This function is called to generate the boolean if it is false.

sink is the output iterator to use for generation

b is the boolean to convert (the value is false).

The template parameters CharEncoding and Tag are either of the type unused_type
or describe the character class and conversion to be applied to any output possibly
influenced by either the lower[] or upper[] directives.

The return value defines the outcome of the whole generator.

template <typename CharEncod↵
ing,

typename Tag, typename Out↵
putIterator>
bool generate_false(
 OutputIterator& sink, B ↵
b);

This function is called to generate the boolean if it is true.

sink is the output iterator to use for generation

b is the boolean to convert (the value is true).

The template parameters CharEncoding and Tag are either of the type unused_type
or describe the character class and conversion to be applied to any output possibly
influenced by either the lower[] or upper[] directives.

The return value defines the outcome of the whole generator.

template <typename CharEncod↵
ing,

typename Tag, typename Out↵
putIterator>
bool generate_true(
 OutputIterator& sink, B ↵
b);

Complexity

O(N), where N is the number of characters needed to represent the generated boolean.

293

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::bool_;
using boost::spirit::karma::lit;

Basic usage of an bool_ generator:

test_generator("true", lit(true));
test_generator("false", bool_(false));
test_generator_attr("true", bool_(true), true);
test_generator_attr("", bool_(true), false); // fails (as true != false)!
test_generator_attr("false", bool_, false);

Operator

Operators are used as a means for object composition and embedding. Simple generators may be composed to form composites
through operator overloading, crafted to approximate the syntax of Parsing Expression Grammar (PEG). An expression such as:

a | b

yields a new generator type which is a composite of its operands, a and b.

This module includes different generators which get instantiated if one of the overloaded operators is used with more primitive
generator constructs. It includes sequences (a << b), alternatives (a | b), Kleene star (unary *), plus (unary +), optional (unary
-), lists (a % b), and the two predicates, the and predicate (unary &) and the not predicate (unary !).

Module Header

// forwards to <boost/spirit/home/karma/operator.hpp>
#include <boost/spirit/include/karma_operator.hpp>

Also, see Include Structure.

Sequences (a << b)

Description

Generator sequences are used to consecutively combine different, more primitive generators. All generators in a sequence are invoked
from left to right as long as they succeed.

294

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Header

// forwards to <boost/spirit/home/karma/operator/sequence.hpp>
#include <boost/spirit/include/karma_sequence.hpp>

Also, see Include Structure.

Model of

NaryGenerator

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in NaryGenerator.

SemanticsExpression

The generators a and b are executed sequentially from left to right and as long as they succeed. A failed generator
stops the execution of the entire sequence and makes the sequence fail as well.

a << b

It is important to note, that sequences don't perform any buffering of the output generated by its elements. That means that any failing
sequence might have already generated some output, which is not rolled back.

Tip

The simplest way to force a sequence to behave as if it did buffering is to wrap it into a buffering directive (see
buffer):

buffer[a << b << c]

which will not generate any output in case of a failing sequence.

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A, b: B --> (a << b): tuple<A, B>
a: A, b: Unused --> (a << b): A
a: Unused, b: B --> (a << b): B
a: Unused, b: Unused --> (a << b): Unused

a: A, b: A --> (a << b): vector<A>
a: vector<A>, b: A --> (a << b): vector<A>
a: A, b: vector<A> --> (a << b): vector<A>
a: vector<A>, b: vector<A> --> (a << b): vector<A>

a << b (sequence)

295

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Important

The table above uses tuple<A, B> and vector<A> as placeholders only.

The notation tuple<A, B> stands for any fusion sequence of two elements, where A is the type of its first element
and B is the type of its second element.

The notation of vector<A> stands for any STL container holding elements of type A.

The attribute composition and propagation rules as shown in the table above make sequences somewhat special as they can operate
in two modes if all elements have the same attribute type: consuming fusion sequences and consuming STL containers. The selected
mode depends on the type of the attribute supplied.

Complexity

The overall complexity of the sequence generator is defined by the sum of the complexities of its elements. The
complexity of the sequence itself is O(N), where N is the number of elements in the sequence.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::double_;

Basic usage of a sequence:

test_generator_attr("1.0,2.0", double_ << ',' << double_, std::make_pair(1.0, 2.0));

Alternative (a | b)

Description

Generator alternatives are used to combine different, more primitive generators into alternatives. All generators in an alternative are
invoked from left to right until one of them succeeds.

Header

// forwards to <boost/spirit/home/karma/operator/alternative.hpp>
#include <boost/spirit/include/karma_alternative.hpp>

Also, see Include Structure.

296

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Model of

NaryGenerator

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in NaryGenerator.

SemanticsExpression

The generators a and b are executed sequentially from left to right until one of them succeeds. A failed generator
forces the alternative generator to try the next one. The alternative fails as a whole only if all elements of the al-
ternative fail. Each element of the alternative gets passed the whole attribute of the alternative.

a | b

Alternatives intercept and buffer the output of the currently executed element. This allows to avoid partial outputs from failing elements
as the buffered content will be forwarded to the actual output only after an element succeeded.

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A, b: B --> (a | b): variant<A, B>
a: A, b: Unused --> (a | b): A
a: Unused, b: B --> (a | b): B
a: Unused, b: Unused --> (a | b): Un↵
used
a: A, b: A --> (a | b): A

a | b (alternative)

Important

The table above uses variant<A, B> as a placeholder only. The notation variant<A, B> stands for the type
boost::variant<A, B>.

The attribute handling of Alternatives is special as their behavior is not completely defined at compile time. First of all the selected
alternative element depends on the actual type of the attribute supplied to the alternative generator (i.e. what is stored in the variant).
The attribute type supplied at runtime narrows the set of considered alternatives to those being compatible attribute wise. The remaining
alternatives are tried sequentially until the first of them succeeds. See below for an example of this behavior.

Complexity

The overall complexity of the alternative generator is defined by the sum of the complexities of its elements. The
complexity of the alternative itself is O(N), where N is the number of elements in the alternative.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

297

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::double_;
using boost::spirit::karma::ascii::string;

Basic usage of an alternative. While being only the second alternative, the double_ generator is chosen for output formatting because
the supplied attribute type is not compatible (i.e. not convertible) to the attribute type of the string alternative.

boost::variant<std::string, double> v1(1.0);
test_generator_attr("1.0", string | double_, v1);
test_generator_attr("2.0", string | double_, 2.0);

The same formatting rules may be used to output a string. This time we supply the string "example", resulting in the first alternative
to be chosen for the generated output.

boost::variant<std::string, double> v2("example");
test_generator_attr("example", string | double_, v2);
test_generator_attr("example", string | double_, "example");

Kleene Star (*a)

Description

Kleene star generators are used to repeat the execution of an embedded generator zero or more times. Regardless of the success of
the embedded generator, the Kleene star generator always succeeds.

Header

// forwards to <boost/spirit/home/karma/operator/kleene.hpp>
#include <boost/spirit/include/karma_kleene.hpp>

Also, see Include Structure.

Model of

UnaryGenerator

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryGenerator.

SemanticsExpression

The generator a is executed zero or more times depending on the availability of an attribute. The execution of a
stops after the attribute values passed to the Kleene star generator are exhausted. The Kleene star always succeeds
(unless the underlying output stream reports an error).

*a

298

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

All failing iterations of the embedded generator will consume one element from the supplied attribute.

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A --> *a: vector<A>
a: Unused --> *a: Un↵
used

*a (Kleene star, unary *)

Important

The table above uses vector<A> as a placeholder only. The notation of vector<A> stands for any STL container
holding elements of type A.

The Kleene star generator will execute its embedded generator once for each element in the provided container attribute as long as
the embedded generator succeeds. On each iteration it will pass the next consecutive element from the container attribute to the
embedded generator. Therefore the number of iterations will not be larger than the number of elements in the container passed as
its attribute. An empty container will make the Kleene star generate no output at all.

It is important to note, that the Kleene star does not perform any buffering of the output generated by its embedded elements. That
means that any failing element generator might have already generated some output, which is not rolled back.

Tip

The simplest way to force a Kleene star to behave as if it did buffering is to wrap it into a buffering directive (see
buffer):

buffer[*a]

which will not generate any output in case of a failing generator *a. The expression:

*(buffer[a])

will not generate any partial output from a generator a if it fails generating in the middle of its output. The overall
expression will still generate the output as produced by all successful invocations of the generator a.

Complexity

The overall complexity of the Kleene star generator is defined by the complexity of its embedded generator multiplied
by the number of executed iterations. The complexity of the Kleene star itself is O(N), where N is the number of
elements in the container passed as its attribute.

299

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::double_;
using boost::spirit::karma::space;

Basic usage of a Kleene star generator:

std::vector<double> v;
v.push_back(1.0);
v.push_back(2.0);
v.push_back(3.0);
test_generator_attr_delim("1.0 2.0 3.0 ", *double_, space, v);

Plus (+a)

Description

The Plus generator is used to repeat the execution of an embedded generator one or more times. It succeeds if the embedded gener-
ator has been successfully executed at least once.

Header

// forwards to <boost/spirit/home/karma/operator/plus.hpp>
#include <boost/spirit/include/karma_plus.hpp>

Also, see Include Structure.

Model of

UnaryGenerator

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryGenerator.

300

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

SemanticsExpression

The generator a is executed one or more times depending on the availability of an attribute. The execution of a
stops after the attribute values passed to the plus generator are exhausted. The plus generator succeeds as long as
its embedded generator has been successfully executed at least once (unless the underlying output stream reports
an error).

+a

Note

All failing iterations of the embedded generator will consume one element from the supplied attribute. The overall
+a will succeed as long as at least one invocation of the embedded generator will succeed (unless the underlying
output stream reports an error).

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A --> +a: vector<A>
a: Unused --> +a: Un↵
used

+a (unary +)

Important

The table above uses vector<A> as a placeholder only. The notation of vector<A> stands for any STL container
holding elements of type A.

The Plus generator will execute its embedded generator once for each element in the provided container attribute as long as the em-
bedded generator succeeds. On each iteration it will pass the next consecutive element from the container attribute to the embedded
generator. Therefore the number of iterations will not be larger than the number of elements in the container passed as its attribute.
An empty container will make the plus generator fail.

It is important to note, that the plus generator does not perform any buffering of the output generated by its embedded elements.
That means that any failing element generator might have already generated some output, which is not rolled back.

Tip

The simplest way to force a plus generator to behave as if it did buffering is to wrap it into a buffering directive (see
buffer):

buffer[+a]

which will not generate any output in case of a failing generator +a. The expression:

+(buffer[a])

will not generate any partial output from a generator a if it fails generating in the middle of its output. The overall
expression will still generate the output as produced by all successful invocations of the generator a.

301

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Complexity

The overall complexity of the plus generator is defined by the complexity of its embedded generator multiplied
by the number of executed iterations. The complexity of the plus generator itself is O(N), where N is the number
of elements in the container passed as its attribute.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::double_;
using boost::spirit::karma::space;

Basic usage of a plus generator:

std::vector<double> v1;
v1.push_back(1.0);
v1.push_back(2.0);
v1.push_back(3.0);
test_generator_attr_delim("1.0 2.0 3.0 ", +double_, space, v1);

A more sophisticated use case showing how to leverage the fact that plus is failing for empty containers passed as its attribute:

std::vector<double> v2; // empty container
test_generator_attr("empty", +double_ | "empty", v2);

Lists (a % b)

Description

The list generator is used to repeat the execution of an embedded generator and interspace it with the output of another generator
one or more times. It succeeds if the embedded generator has been successfully executed at least once.

Header

// forwards to <boost/spirit/home/karma/operator/list.hpp>
#include <boost/spirit/include/karma_list.hpp>

Also, see Include Structure.

Model of

BinaryGenerator

302

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in BinaryGenerator.

SemanticsExpression

The generator a is executed one or more times depending on the availability of an attribute. The output generated
by a is interspaced with the output generated by b. The list generator succeeds if its first embedded generator has
been successfully executed at least once (unless the underlying output stream reports an error).

a % b

The list expression a % b is a shortcut for a << *(b << a). It is almost semantically equivalent, except for the attribute of b,
which gets ignored in the case of the list generator.

Note

All failing iterations of the embedded generator will consume one element from the supplied attribute. The overall
a % b will succeed as long as at least one invocation of the embedded generator, a, will succeed (unless the under-
lying output stream reports an error).

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A, b: B --> (a % b): vector<A>
a: Unused, b: B --> (a % b): Un↵
used

a % b (list)

Important

The table above uses vector<A> as a placeholder only. The notation of vector<A> stands for any STL container
holding elements of type A.

The list generator will execute its embedded generator once for each element in the provided container attribute and as long as the
embedded generator succeeds. The output generated by its first generator will be interspaced by the output generated by the second
generator. On each iteration it will pass the next consecutive element from the container attribute to the first embedded generator.
The second embedded generator does not get passed any attributes (it gets invoked using an unused_type as its attribute). Therefore
the number of iterations will not be larger than the number of elements in the container passed as its attribute. An empty container
will make the list generator fail.

Tip

If you want to use the list generator and still allow for an empty attribute, you can use the optional operator (see
Optional (unary -)):

-(a % b)

which will succeed even if the provided container attribute does not contain any elements.

303

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Complexity

The overall complexity of the list generator is defined by the complexity of its embedded generators multiplied
by the number of executed iterations. The complexity of the list generator itself is O(N), where N is the number
of elements in the container passed as its attribute.

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::double_;

Basic usage of a list generator:

std::vector<double> v1;
v1.push_back(1.0);
test_generator_attr("1.0", double_ % ',', v1);

v1.push_back(2.0);
test_generator_attr("1.0,2.0", double_ % ',', v1);

Optional (-a)

Description

The optional generator is used to conditionally execute an embedded generator. It succeeds always.

Header

// forwards to <boost/spirit/home/karma/operator/optional.hpp>
#include <boost/spirit/include/karma_optional.hpp>

Also, see Include Structure.

Model of

UnaryGenerator

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryGenerator.

304

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

SemanticsExpression

The generator a is executed depending on the availability of an attribute. The optional generator succeeds if its
embedded generator succeeds (unless the underlying output stream reports an error).

-a

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A --> -a: option↵
al<A>
a: Unused --> -a: Un↵
used

-a (optional, unary -)

Important

The table above uses optional<A> as a placeholder only. The notation of optional<A> stands for the data type
boost::optional<A>.

The optional generator will execute its embedded generator once if the provided attribute holds a valid value. It forwards the value
held in its attribute to the embedded generator.

It is important to note, that the optional generator does not perform any buffering of the output generated by its embedded elements.
That means that any failing element might have already generated some output, which is not rolled back.

Tip

The simplest way to force a optional generator to behave as if it did buffering is to wrap it into a buffering directive
(see buffer):

buffer[-a]

which will not generate any output in case of a failing generator -a.

Complexity

The overall complexity of the optional generator is defined by the complexity of its embedded generator. The
complexity of the optional generator itself is O(1).

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

305

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::double_;

Basic usage of an optional generator:

boost::optional<double> val(1.0);
test_generator_attr("1.0", -double_, val);
test_generator_attr("2.0", -double_, 2.0);

Usage and result of an empty optional generator:

boost::optional<double> val; // empty optional
test_generator_attr("", -double_, val);

And-Predicate (&a)

Description

The and-predicate generator is used to test, whether the embedded generator succeeds without generating any output. It succeeds if
the embedded generator succeeds.

Header

// forwards to <boost/spirit/home/karma/operator/and_predicate.hpp>
#include <boost/spirit/include/karma_and_predicate.hpp>

Also, see Include Structure.

Model of

UnaryGenerator

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryGenerator.

SemanticsExpression

The generator a is executed for the sole purpose of testing whether it succeeds. The and-predicate generator succeeds
if its embedded generator succeeds (unless the underlying output stream reports an error). The and-predicate
never produces any output.

&a

The and generator is implemented by redirecting all output produced by its embedded generator into a discarding device.

Attributes

See Compound Attribute Notation.

306

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

AttributeExpression

a: A --> &a: A&a (and-predicate, unary &)

Note

The attribute of the and-predicate is not always unused_type, which is different from Qi's and-predicate. This is
necessary as the generator the and predicate is attached to most of the time needs an attribute.

Complexity

The overall complexity of the and-predicate generator is defined by the complexity of its embedded generator.
The complexity of the and-predicate generator itself is O(1).

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::double_;
using boost::spirit::karma::ascii::char_;
using boost::spirit::karma::ascii::string;
using boost::phoenix::ref;

Basic usage of an and predicate generator:

test_generator_attr("b", &char_('a') << 'b' | 'c', 'a');
test_generator_attr("c", &char_('a') << 'b' | 'c', 'x');

test_generator_attr("abc", &string("123") << "abc" | "def", "123");
test_generator_attr("def", &string("123") << "abc" | "def", "456");

Not-Predicate (!a)

Description

The not-predicate generator is used to test, whether the embedded generator fails, without generating any output. It succeeds if the
embedded generator fails.

307

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Header

// forwards to <boost/spirit/home/karma/operator/not_predicate.hpp>
#include <boost/spirit/include/karma_not_predicate.hpp>

Also, see Include Structure.

Model of

UnaryGenerator

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in UnaryGenerator.

SemanticsExpression

The generator a is executed for the sole purpose of testing whether it succeeds. The not-predicate generator succeeds
if its embedded generator fails (unless the underlying output stream reports an error). The not-predicate never
produces any output.

!a

The not generator is implemented by redirecting all output produced by its embedded generator into a discarding device.

Attributes

See Compound Attribute Notation.

AttributeExpression

a: A --> !a: A!a (not-predicate, unary !)

Note

The attribute of the not-predicate is not always unused_type, which is different from Qi's not-predicate. This is
necessary as the generator the and-predicate is attached to most of the time needs an attribute.

Complexity

The overall complexity of the not-predicate generator is defined by the complexity of its embedded generator. The
complexity of the not-predicate generator itself is O(1).

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

308

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::double_;
using boost::spirit::karma::ascii::char_;
using boost::spirit::karma::ascii::string;
using boost::phoenix::ref;

Basic usage of a not predicate generator:

test_generator_attr("c", !char_('a') << 'b' | 'c', 'a');
test_generator_attr("b", !char_('a') << 'b' | 'c', 'x');

test_generator_attr("def", !string("123") << "abc" | "def", "123");
test_generator_attr("abc", !string("123") << "abc" | "def", "456");

Stream

This module includes the description of the different variants of the stream generator. It can be used to utilize existing streaming
operators (operator<<(std::ostream&, ...)) for output generation.

Header

// forwards to <boost/spirit/home/karma/stream.hpp>
#include <boost/spirit/include/karma_stream.hpp>

Also, see Include Structure.

Stream (stream, wstream, etc.)

Description

The stream_generator is a primitive which allows to use pre-existing standard streaming operators for output generation integrated
with Spirit.Karma. It provides a wrapper generator dispatching the value to output to the stream operator of the corresponding type.
Any value a to be formatted using the stream_generator will result in invoking the standard streaming operator for its type A,
for instance:

std::ostream& operator<< (std::ostream&, A const&);

Header

// forwards to <boost/spirit/home/karma/stream.hpp>
#include <boost/spirit/include/karma_stream.hpp>

Also, see Include Structure.

309

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Namespace

Name

boost::spirit::stream // alias: boost::spirit::karma::stream

boost::spirit::wstream // alias: boost::spirit::karma::wstream

Synopsis

template <typename Char>
struct stream_generator;

Template parameters

DefaultDescriptionParameter

charThe character type to use to generate the output. This type will be used while assigning the generated
characters to the underlying output iterator.

Char

Model of

PrimitiveGenerator

Notation

s A variable instance of any type with a defined matching streaming operator<<() or a Lazy Argument that evaluates to any
type with a defined matching streaming operator<<().

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveGenerator.

DescriptionExpression

Call the streaming operator<<() for the type of the mandory attribute. The output emitted by this operator
will be the result of the stream generator. This generator never fails (unless the underlying output stream reports
an error). The character type of the I/O ostream is assumed to be char.

stream

Call the streaming operator<<() for the type of the immediate value s. The output emitted by this operator
will be the result of the stream generator. This generator never fails (unless the underlying output stream reports
an error). The character type of the I/O ostream is assumed to be char.

stream(s)

Call the streaming operator<<() for the type of the mandory attribute. The output emitted by this operator
will be the result of the stream generator. This generator never fails (unless the underlying output stream reports
an error). The character type of the I/O ostream is assumed to be wchar_t.

wstream

Call the streaming operator<<() for the type of the immediate value s. The output emitted by this operator
will be the result of the stream generator. This generator never fails (unless the underlying output stream reports
an error). The character type of the I/O ostream is assumed to be wchar_t.

wstream(s)

All generators listed in the table above are predefined specializations of the stream_generator<Char> basic stream generator
type described below. It is possible to directly use this type to create stream generators using an arbitrary underlying character type.

310

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

SemanticsExpression

Call the streaming operator<<() for the type of the mandory attribute. The output emitted by this
operator will be the result of the stream generator. This generator never fails (unless the underlying
output stream reports an error). The character type of the I/O ostream is assumed to be Char

stream_generat↵
or<
 Char
>()

Call the streaming operator<<() for the type of the immediate value s. The output emitted by this
operator will be the result of the stream generator. This generator never fails (unless the underlying
output stream reports an error). The character type of the I/O ostream is assumed to be Char.

stream_generat↵
or<
 Char
>()(s)

Additional Requirements

All of the stream generators listed above require the type of the value to generate output for (either the immediate value or the asso-
ciated attribute) to implement a streaming operator conforming to the usual I/O streams conventions (where attribute_type is
the type of the value to generate output for):

template <typename Ostream>
Ostream& operator<< (Ostream& os, attribute_type const& attr)
{

// type specific output generation
return os;

}

This operator will be called by the stream generators to gather the output for the attribute of type attribute_type. All data streamed
into the given Ostream will end up being generated by the corresponding stream generator instance.

Note

If the stream generator is invoked inside a format (or format_delimited) stream manipulator the Ostream
passed to the operator<<() will have registered (imbued) the same standard locale instance as the stream the
format (or format_delimited) manipulator has been used with. This ensures all facets registered (imbued) with
the original I/O stream object are used during output generation.

Attributes

AttributeExpression

hold_any, attribute is mandatory (otherwise compilation will fail)stream

unusedstream(s)

hold_any, attribute is mandatory (otherwise compilation will fail)wstream

unusedwstream(s)

hold_any, attribute is mandatory (otherwise compilation will fail)stream_generator<Char>()

unusedstream_generator<Char>()(s)

311

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Important

The attribute type hold_any exposed by some of the stream generators is semantically and syntactically equivalent
to the type implemented by Boost.Any. It has been added to Spirit as it has better a performance and a smaller
footprint if compared to Boost.Any.

Note

In addition to their usual attribute of type Attrib all listed generators accept an instance of a boost::option-
al<Attrib> as well. If the boost::optional<> is initialized (holds a value) the generators behave as if their
attribute was an instance of Attrib and emit the value stored in the boost::optional<>. Otherwise the generators
will fail.

Complexity

O(N), where N is the number of characters emitted by the stream generator

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::stream;

And a class definition used in the examples:

312

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/any/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/any/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// a simple complex number representation z = a + bi
struct complex
{
 complex (double a, double b)

: a(a), b(b)
{}

double a;
double b;

};

// define streaming operator for the type complex
std::ostream&
operator<< (std::ostream& os, complex const& z)
{
 os << "{" << z.a << "," << z.b << "}";

return os;
}

Basic usage of stream generators:

test_generator_attr("abc", stream, "abc");
test_generator("abc", stream("abc"));
test_generator_attr("{1.2,2.4}", stream, complex(1.2, 2.4));
test_generator("{1.2,2.4}", stream(complex(1.2, 2.4)));

String

This module includes different string oriented generators allowing to output character sequences. It includes the symbols generator
and variants of the string generator.

Module Header

// forwards to <boost/spirit/home/karma/string.hpp>
#include <boost/spirit/include/karma_string.hpp>

Also, see Include Structure.

String (string, lit)

Description

The string generators described in this section are:

The string generator emits a string of characters. The string generator is implicitly verbatim: the delimit parser is not applied
in between characters of the string. The string generator has an associated Character Encoding Namespace. This is needed when
doing basic operations such as forcing lower or upper case. Examples:

string("Hello")
string(L"Hello")
string(s) // s is a std::string

lit, like string, also emits a string of characters. The main difference is that lit does not consumes an attribute. A plain string
like "hello" or a std::basic_string is equivalent to a lit. Examples:

313

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

"Hello"
lit("Hello")
lit(L"Hello")
lit(s) // s is a std::string

Header

// forwards to <boost/spirit/home/karma/string/lit.hpp>
#include <boost/spirit/include/karma_string.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::lit // alias: boost::spirit::karma::lit

ns::string

In the table above, ns represents a Character Encoding Namespace used by the corresponding string generator.

Model of

PrimitiveGenerator

Notation

s Character-class specific string (See Character Class Types), or a Lazy Argument that evaluates to a character-class specific
string value

S The type of a character-clas specific string s.

ns A Character Encoding Namespace.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveGenerator.

DescriptionExpression

Generate the string literal s. This generator never fails (unless the underlying output stream reports an error).s

Generate the string literal s. This generator never fails (unless the underlying output stream reports an error).lit(s)

Generate the string provided by a mandatory attribute interpreted in the character set defined by ns. This
generator never fails (unless the underlying output stream reports an error).

ns::string

Generate the string s as provided by the immediate literal value the generator is initialized from. If this
generator has an associated attribute it succeeds only if the attribute is equal to the immediate literal (unless
the underlying output stream reports an error). Otherwise this generator fails and does not generate any
output.

ns::string(s)

314

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

The generators lit(s) and string(s) can be initialized either using a string literal value (i.e. "abc"), or using
a std::basic_string<char_type, ...>, where char_type is the required value type of the underlying
character sequence.

Attributes

AttributeExpression

unuseds

unusedlit(s)

S, attribute is mandatory (otherwise compilation will fail)ns::string

S, attribute is optional, if it is supplied, the generator compares the attribute with s and succeeds only if
both are equal, failing otherwise

ns::string(s)

Note

In addition to their usual attribute of type S all listed generators accept an instance of a boost::optional<S> as
well. If the boost::optional<> is initialized (holds a value) the generators behave as if their attribute was an
instance of S and emit the value stored in the boost::optional<>. Otherwise the generators will fail.

Complexity

O(N), where N is the number of characters emitted by the string generator

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::lit;
using boost::spirit::ascii::string;

Basic usage of string generators:

315

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

test_generator("abc", "abc");
test_generator("abc", lit("abc"));
test_generator("abc", lit(std::string("abc")));

test_generator_attr("abc", string, "abc");
test_generator("abc", string("abc"));
test_generator("abc", string(std::string("abc")));

test_generator_attr("abc", string("abc"), "abc");
test_generator_attr("", string("abc"), "cba"); // fails (as "abc" != "cba")

Symbols (symbols)

Description

The class symbols implements an 'inverse' symbol table: an associative container (or map) of key-value pairs where the values are
(most of the time) strings. It maps the value to be generated (the key) to any other value which will be emitted instead of the original
key.

The Karma symbol table class symbols is-a generator, an instance of which may be used anywhere in the grammar specification.
It is an example of a dynamic generator. A dynamic generator is characterized by its ability to modify its behavior at run time. Initially,
an empty symbols object will emit nothing. At any time, symbols may be added, thus, dynamically altering its behavior.

Header

// forwards to <boost/spirit/home/karma/string/symbols.hpp>
#include <boost/spirit/include/karma_symbols.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::karma::symbols

316

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

template <typename Attrib, typename T, typename Lookup
, typename CharEncoding, typename Tag>

struct symbols;

Template parameters

DefaultDescriptionParameter

charThe type of the original attribute to be used as the key into the
symbol generator (the symbol).

Attrib

unused_typeThe data type associated with each key.T

if T is unused_type, std::set<At-
trib>, and std::map<Attrib, T>

otherwise

The symbol search implementationLookup

unused_typeUsed for character set selection, normally not used by end user.CharEncoding

unused_typeUsed for character set selection, normally not used by end user.Tag

Model of

PrimitiveGenerator

Notation

Sym A symbols type.

Attrib An attribute type.

T A data type.

sym, sym2 symbols objects.

sseq An STL container of strings.

dseq An STL container of data with value_type T.

s1...sN A String.

d1...dN Objects of type T.

f A callable function or function object.

f, l ForwardIterator first/last pair.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveGenerator.

317

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

SemanticsExpression

Construct an empty symbols object instance.Sym()

Copy construct a symbols from sym2 (Another symbols object).Sym(sym2)

Construct symbols from sseq (An STL container of symbols of type Attrib).Sym(sseq)

Construct symbols from sseq and dseq (An STL container of symbols of type Attrib
and an STL container of data with value_type T).

Sym(sseq, dseq)

Assign sym2 to sym.sym = sym2

Assign one or more symbols (s1...sN) to sym. The associated data values of type T
are default constructed.

sym = s1, s2, ..., sN

Add one or more symbols (s1...sN) to sym. The associated data values of type T are
default constructed.

sym += s1, s2, ..., sN

Add one or more symbols (s1...sN) to sym. The associated data values of type T are
default constructed.

sym.add(s1)(s2)...(sN)

Add one or more symbols (s1...sN) with associated data (d1...dN) to sym.sym.add(s1, d1)(s2, d2)...(sN,

dN)

Remove one or more symbols (s1...sN) from sym.sym -= s1, s2, ..., sN

Remove one or more symbols (s1...sN) from sym.sym.remove(s1)(s2)...(sN)

Erase all of the symbols in sym.sym.clear()

Return a reference to the object associated with symbol, s. If sym does not already
contain such an object, at inserts the default object T().

sym.at(s)

Return a pointer to the object associated with symbol, s. If sym does not already
contain such an object, find returns a null pointer.

sym.find(s)

For each symbol in sym s invoke f(typename Lookup::value_type).sym.for_each(f)

The symbols generator uses the supplied attribute as the key to be looked up in the internal associative container. If the key exists
the generator emits the associated value and succeeds (unless the underlying output stream reports an error). If the value type stored
in the symbol generator is unused_type it will emit the key instead. If the key does not exist the generator fails while not emitting
anything.

Attributes

The attribute of symbol<Attrib, T> is Attrib.

Complexity

The default implementation uses a std::map<> or a std::set<> with a complexity of:

O(log n)

Where n is the number of stored symbols.

318

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

Note

The test harness for the example(s) below is presented in the Basics Examples section.

Some includes:

#include <boost/spirit/include/karma.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/fusion/include/std_pair.hpp>
#include <iostream>
#include <string>

Some using declarations:

using boost::spirit::karma::symbols;

Basic usage of symbol generators:

symbols<char, char const*> sym;

sym.add
('a', "Apple")
('b', "Banana")
('o', "Orange")

;

test_generator_attr("Banana", sym, 'b');

Performance Measurements

Performance of Numeric Generators

Comparing the performance of a single int_ generator

These performance measurements are centered around default formatting of a single int integer number using different libraries
and methods. The overall execution times for those examples are compared below. We compare using sprintf, C++ iostreams,
Boost.Format, and Spirit.Karma.

For the full source code of the performance test please see here: int_generator.cpp. All the measurements have been done by executing
1e7 iterations for each formatting type (NUMITERATIONS is set to 1e7 in the code shown below).

Code used to measure the performance for ltoa:

char buffer[65]; // we don't expect more than 64 bytes to be generated here
for (int i = 0; i < MAX_ITERATION; ++i)
{
 ltoa(v[i], buffer, 10);
}

Code used to measure the performance for standard C++ iostreams:

319

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/format/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../benchmarks/karma/int_generator.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::stringstream str;
for (int i = 0; i < MAX_ITERATION; ++i)
{
 str.str("");
 str << v[i];
}

Code used to measure the performance for Boost.Format:

std::string str;
boost::format int_format("%d");
for (int i = 0; i < MAX_ITERATION; ++i)
{
 str = boost::str(int_format % v[i]);
}

Code used to measure the performance for Spirit.Karma using a plain character buffer:

char buffer[65]; // we don't expect more than 64 bytes to be generated here
for (int i = 0; i < MAX_ITERATION; ++i)
{

char *ptr = buffer;
 karma::generate(ptr, int_, v[i]);

*ptr = '\0';
}

The following table shows the overall performance results collected while using different compilers. All times are in seconds
measured for 1e7 iterations (platform: Windows7, Intel Core Duo(tm) Processor, 2.8GHz, 4GByte RAM). For a more readable
comparison of the results see this figure.

Table 5. Performance comparison for a single int (all times in [s], `1e7` iterations)

Intel 11.1 (64
bit)

VC++ 10 (64
bit)

gcc 4.4.0 (64
bit)

Intel 11.1 (32
bit)

VC++ 10 (32
bit)

gcc 4.4.0 (32
bit)

Library

0.9061.0991.1630.8840.8951.542ltoa

8.1158.3163.46411.89813.7276.548iostreams

13.64614.66217.46420.47721.81316.998Boost.Format

0.6060.9531.0720.6970.7441.421Spirit.Karma int_

320

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/format/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/format/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Figure 3. Performance comparison for a single int

Comparing the performance of a single double_ generator

These performance measurements are centered around default formatting of a single double floating point number using different
libraries and methods. The overall execution times for those examples are compared below. We compare using sprintf, C++
iostreams, Boost.Format, and Spirit.Karma.

For the full source code of the performance test please see here: double_performance.cpp. All the measurements have been done by
executing 1e6 iterations for each formatting type (NUMITERATIONS is set to 1e6 in the code shown below).

Code used to measure the performance for sprintf:

char buffer[256];
for (int i = 0; i < NUMITERATIONS; ++i) {
 sprintf(buffer, "%f", 12345.12345);
}

Code used to measure the performance for standard C++ iostreams:

std::stringstream strm;
for (int i = 0; i < NUMITERATIONS; ++i) {
 strm.str("");
 strm << 12345.12345;
}

Code used to measure the performance for Boost.Format:

321

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/format/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../benchmarks/karma/double_performance.cpp
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/format/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::string generated;
boost::format double_format("%f");
for (int i = 0; i < NUMITERATIONS; ++i)
 generated = boost::str(double_format % 12345.12345);

The following code shows the common definitions used by all Spirit.Karma performance measurements as listed below:

using boost::spirit::karma::double_;

Code used to measure the performance for Spirit.Karma using a plain character buffer:

char buffer[256];
for (int i = 0; i < NUMITERATIONS; ++i) {

char *p = buffer;
 generate(p, double_, 12345.12345);

*p = '\0';
}

The following table shows the overall performance results collected while using different compilers. All times are in seconds
measured for 1e6 iterations (platform: Windows7, Intel Core Duo(tm) Processor, 2.8GHz, 4GByte RAM). For a more readable
comparison of the results see this figure.

Table 6. Performance comparison for a single double (all times in [s], `1e6` iterations)

Intel 11.1 (64
bit)

VC++ 10 (64
bit)

gcc 4.4.0 (64
bit)

Intel 11.1 (32
bit)

VC++ 10 (32
bit)

gcc 4.4.0 (32
bit)

Library

0.6940.8070.7130.8800.9650.755sprintf

1.3541.4681.6341.9642.6242.316iostreams

2.0112.6723.2172.8783.7373.188Boost.Format

0.2180.2600.4260.3680.5610.813S p i r i t . K a r m a
double_

322

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/format/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Figure 4. Performance comparison for a single double

Comparing the performance of a sequence of several generators

These performance measurements are centered around formatting of a sequence of different items, including 2 double floating point
numbers using different libraries and methods. The overall execution times for those examples are compared below. We compare
using sprintf, C++ iostreams, Boost.Format, and Spirit.Karma.

For the full source code of the performance test please see here: format_performance.cpp. All the measurements have been done by
doing 1e6 iterations for each formatting type (NUMITERATIONS is set to 1e6).

Code used to measure the performance for sprintf:

char buffer[256];
for (int i = 0; i < NUMITERATIONS; ++i) {
 sprintf(buffer, "[%-14.3f%-14.3f]", 12345.12345, 12345.12345);
}

Code used to measure the performance for standard iostreams:

323

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/format/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../benchmarks/karma/format_performance.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::stringstream strm;
for (int i = 0; i < NUMITERATIONS; ++i) {
 strm.str("");
 strm << '['

<< std::setiosflags(std::ios::fixed)
<< std::left
<< std::setprecision(3)
<< std::setw(14)
<< 12345.12345
<< std::setw(14)
<< 12345.12345
<< ']';

}

Code used to measure the performance for Boost.Format:

std::string generated;
boost::format outformat("[%-14.3f%-14.3f]");
for (int i = 0; i < NUMITERATIONS; ++i)
 generated = boost::str(outformat % 12345.12345 % 12345.12345);

The following code shows the common definitions used by all Spirit.Karma performance measurements as listed below:

template <typename T>
struct double3_policy : boost::spirit::karma::real_policies<T>
{

// we want to generate up to 3 fractional digits
static unsigned int precision(T) { return 3; }

};

typedef boost::spirit::karma::real_generator<double, double3_policy<double> >
 double3_type;
double3_type const double3 = double3_type();

Code used to measure the performance for Spirit.Karma using a plain character buffer:

char buffer[256];
for (int i = 0; i < NUMITERATIONS; ++i) {

char *p = buffer;
 generate(p

, '[' << left_align(14)[double3] << left_align(14)[double3] << ']'
, 12345.12345, 12345.12345);

*p = '\0';
}

The following table shows the overall performance results collected while using different compilers. All times are in seconds
measured for 1e6 iterations (platform: Windows7, Intel Core Duo(tm) Processor, 2.8GHz, 4GByte RAM). For a more readable
comparison of the results see this figure.

324

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/format/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 7. Performance comparison for a sequence of several items (all times in [s], `1e6` iterations)

Intel 11.1 (64
bit)

VC++ 10 (64
bit)

gcc 4.4.0 (64
bit)

Intel 11.1 (32
bit)

VC++ 10 (32
bit)

gcc 4.4.0 (32
bit)

Library

1.4931.6081.4691.9031.8921.725sprintf

2.8773.3193.1124.4445.2874.827iostreams

4.1645.2545.4555.8017.0895.881Boost.Format

0.6860.7581.3340.9991.2421.942Spirit.Karma

Figure 5. Performance comparison for a sequence of several items

Lex - Writing Lexical Analyzers

Introduction to Spirit.Lex
Lexical scanning is the process of analyzing the stream of input characters and separating it into strings called tokens, separated by
whitespace. Most compiler texts start here, and devote several chapters to discussing various ways to build scanners. Spirit.Lex is a
library built to take care of the complexities of creating a lexer for your grammar (in this documentation we will use the terms 'lex-
ical analyzer', 'lexer' and 'scanner' interchangably). All that is needed to create a lexer is to know the set of patterns describing the
different tokens you want to recognize in the input. To make this a bit more formal, here are some definitions:

• A token is a sequence of consecutive characters having a collective meaning. Tokens may have attributes specific to the token
type, carrying additional information about the matched character sequence.

• A pattern is a rule expressed as a regular expression and describing how a particular token can be formed. For example, [A-Za-
z][A-Za-z_0-9]* is a pattern for a rule matching C++ identifiers.

325

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/format/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Characters between tokens are called whitespace; these include spaces, tabs, newlines, and formfeeds. Many people also count
comments as whitespace, though since some tools such as lint look at comments, this method is not perfect.

Why Use a Separate Lexer?

Typically, lexical scanning is done in a separate module from the parser, feeding the parser with a stream of input tokens only.
Theoretically it is not necessary implement this separation as in the end there is only one set of syntactical rules defining the language,
so in theory we could write the whole parser in one module. In fact, Spirit.Qi allows you to write parsers without using a lexer,
parsing the input character stream directly, and for the most part this is the way Spirit has been used since its invention.

However, this separation has both practical and theoretical basis, and proves to be very useful in practical applications. In 1956,
Noam Chomsky defined the "Chomsky Hierarchy" of grammars:

• Type 0: Unrestricted grammars (e.g., natural languages)

• Type 1: Context-Sensitive grammars

• Type 2: Context-Free grammars

• Type 3: Regular grammars

The complexity of these grammars increases from regular grammars being the simplest to unrestricted grammars being the most
complex. Similarly, the complexity of pattern recognition for these grammars increases. Although, a few features of some programming
languages (such as C++) are Type 1, fortunately for the most part programming languages can be described using only the Types 2
and 3. The neat part about these two types is that they are well known and the ways to parse them are well understood. It has been
shown that any regular grammar can be parsed using a state machine (finite automaton). Similarly, context-free grammars can always
be parsed using a push-down automaton (essentially a state machine augmented by a stack).

In real programming languages and practical grammars, the parts that can be handled as regular expressions tend to be the lower-
level pieces, such as the definition of an identifier or of an integer value:

letter := [a-zA-Z]
digit := [0-9]

identifier := letter [letter | digit]*
integer := digit+

Higher level parts of practical grammars tend to be more complex and can't be implemented using plain regular expressions. We
need to store information on the built-in hardware stack while recursing the grammar hierarchy, and that is the preferred approach
used for top-down parsing. Since it takes a different kind of abstract machine to parse the two types of grammars, it proved to be
efficient to separate the lexical scanner into a separate module which is built around the idea of a state machine. The goal here is to
use the simplest parsing technique needed for the job.

Another, more practical, reason for separating the scanner from the parser is the need for backtracking during parsing. The input
data is a stream of characters, which is often thought to be processed left to right without any backtracking. Unfortunately, in practice
most of the time that isn't possible. Almost every language has certain keywords such as IF, FOR, and WHILE. The decision if a
certain character sequence actually comprises a keyword or just an identifier often can be made only after seeing the first delimiter
after it. In fact, this makes the process backtracking, since we need to store the string long enough to be able to make the decision.
The same is true for more coarse grained language features such as nested IF/ELSE statements, where the decision about to which
IF belongs the last ELSE statement can be made only after seeing the whole construct.

So the structure of a conventional compiler often involves splitting up the functions of the lower-level and higher-level parsing. The
lexical scanner deals with things at the character level, collecting characters into strings, converting character sequence into different
representations as integers, etc., and passing them along to the parser proper as indivisible tokens. It's also considered normal to let
the scanner do additional jobs, such as identifying keywords, storing identifiers in tables, etc.

Now, Spirit follows this structure, where Spirit.Lex can be used to implement state machine based recognizers, while Spirit.Qi can
be used to build recognizers for context free grammars. Since both modules are seemlessly integrated with each other and with the
C++ target language it is even possible to use the provided functionality to build more complex grammar recognizers.

326

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Advantages of using Spirit.Lex

The advantage of using Spirit.Lex to create the lexical analyzer over using more traditional tools such as Flex is its carefully crafted
integration with the Spirit library and the C++ host language. You don't need any external tools to generate the code, your lexer will
be perfectly integrated with the rest of your program, making it possible to freely access any context information and data structure.
Since the C++ compiler sees all the code, it will generate optimal code no matter what configuration options have been chosen by
the user. Spirit.Lex gives you the vast majority of features you could get from a similar Flex program without the need to leave C++
as a host language:

• The definition of tokens is done using regular expressions (patterns)

• The token definitions can refer to special substitution strings (pattern macros) simplifying pattern definitions

• The generated lexical scanner may have multiple start states

• It is possible to attach code to any of the token definitions; this code gets executed whenever the corresponding token pattern has
been matched

Even if it is possible to use Spirit.Lex to generate C++ code representing the lexical analyzer (we will refer to that as the static
model, described in more detail in the section The Static Model) - a model very similar to the way Flex operates - we will mainly
focus on the opposite, the dynamic model. You can directly integrate the token definitions into your C++ program, building the
lexical analyzer dynamically at runtime. The dynamic model is something not supported by Flex or other lexical scanner generators
(such as re2c, Ragel, etc.). This dynamic flexibility allows you to speed up the development of your application.

The Library Structure of Spirit.Lex

The figure below shows a high level overview of how the Spirit.Lex library might be used in an application. Spirit.Lex allows to
create lexical analyzers based on patterns. These patterns are regular expression based rules used to define the different tokens to be
recognized in the character input sequence. The input sequence is expected to be provided to the lexical analyzer as an arbitrary
standard forward iterator. The lexical analyzer itself exposes a standard forward iterator as well. The difference here is that the exposed
iterator provides access to the token sequence instead of to the character sequence. The tokens in this sequence are constructed on
the fly by analyzing the underlying character sequence and matching this to the patterns as defined by the application.

Figure 6. The Library structure and Common Flow of Information while using Spirit.Lex in an application

327

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://flex.sourceforge.net/
http://spirit.sourceforge.net
http://flex.sourceforge.net/
http://flex.sourceforge.net/
http://flex.sourceforge.net/
http://re2c.sourceforge.net/
http://www.cs.queensu.ca/~thurston/ragel/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Spirit.Lex Tutorials

Spirit.Lex Tutorials Overview

The Spirit.Lex library implements several components on top of possibly different lexer generator libraries. It exposes a pair of
iterators, which, when dereferenced, return a stream of tokens generated from the underlying character stream. The generated tokens
are based on the token definitions supplied by the user.

Currently, Spirit.Lex is built on top of Ben Hansons excellent Lexertl library (which is a proposed Boost library). Lexertl provides
the necessary functionality to build state machines based on a set of supplied regular expressions. But Spirit.Lex is not restricted to
be used with Lexertl. We expect it to be usable in conjunction with any other lexical scanner generator library, all what needs to be
implemented is a set of wrapper objects exposing a well defined interface as described in this documentation.

Note

For the sake of clarity all examples in this documentation assume Spirit.Lex to be used on top of Lexertl.

Building a lexer using Spirit.Lex is highly configurable, where most of this configuration is done at compile time. Almost all of the
configurable parameters have generally useful default values, allowing project startup to be a easy and straightforward task. Here is
a (non-complete) list of features you can tweak to adjust the generated lexer instance to the actual needs:

• Select and customize the token type to be generated by the lexer instance.

• Select and customize the token value types the generated token instances will be able to hold.

• Select the iterator type of the underlying input stream, which will be used as the source for the character stream to tokenize.

• Customize the iterator type returned by the lexer to enable debug support, special handling of certain input sequences, etc.

• Select the dynamic or the static runtime model for the lexical analyzer.

Special care has been taken during the development of the library that optimal code will be generated regardless of the configuration
options selected.

The series of tutorial examples of this section will guide you through some common use cases helping to understand the big picture.
The first two quick start examples (Lex Quickstart 1 - A word counter using Spirit.Lex and Lex Quickstart 2 - A better word counter
using Spirit.Lex) introduce the Spirit.Lex library while building two standalone applications, not being connected to or depending
on any other part of Spirit. The section Lex Quickstart 3 - Counting Words Using a Parser demonstrates how to use a lexer in con-
junction with a parser (where obviously the parser is built using Spirit.Qi).

Quickstart 1 - A word counter using Spirit.Lex

Spirit.Lex is very modular, which follows the general building principle of the Spirit libraries. You never pay for features you don't
use. It is nicely integrated with the other parts of Spirit but nevertheless can be used separately to build standalone lexical analyzers.
The first quick start example describes a standalone application: counting characters, words, and lines in a file, very similar to what
the well known Unix command wc is doing (for the full example code see here: word_count_functor.cpp).

Prerequisites

The only required #include specific to Spirit.Lex follows. It is a wrapper for all necessary definitions to use Spirit.Lex in a standalone
fashion, and on top of the Lexertl library. Additionally we #include two of the Boost headers to define boost::bind() and
boost::ref().

328

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.benhanson.net/lexertl.html
http://www.benhanson.net/lexertl.html
http://www.benhanson.net/lexertl.html
http://www.benhanson.net/lexertl.html
http://spirit.sourceforge.net
http://spirit.sourceforge.net
http://spirit.sourceforge.net
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/lex/word_count_functor.cpp
http://www.benhanson.net/lexertl.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/spirit/include/lex_lexertl.hpp>
#include <boost/bind.hpp>
#include <boost/ref.hpp>

To make all the code below more readable we introduce the following namespaces.

namespace lex = boost::spirit::lex;

Defining Tokens

The most important step while creating a lexer using Spirit.Lex is to define the tokens to be recognized in the input sequence. This
is normally done by defining the regular expressions describing the matching character sequences, and optionally their corresponding
token ids. Additionally the defined tokens need to be associated with an instance of a lexer object as provided by the library. The
following code snippet shows how this can be done using Spirit.Lex.

The template word_count_tokens defines three different tokens: ID_WORD, ID_EOL, and ID_CHAR, representing a word (anything
except a whitespace or a newline), a newline character, and any other character (ID_WORD, ID_EOL, and ID_CHAR are enum values
representing the token ids, but could be anything else convertible to an integer as well). The direct base class of any token definition
class needs to be the template lex::lexer<>, where the corresponding template parameter (here: lex::lexertl::lexer<Ba-
seIterator>) defines which underlying lexer engine has to be used to provide the required state machine functionality. In this
example we use the Lexertl based lexer engine as the underlying lexer type.

template <typename Lexer>
struct word_count_tokens : lex::lexer<Lexer>
{
 word_count_tokens()

{
// define tokens (the regular expression to match and the corresponding
// token id) and add them to the lexer
this->self.add

("[^ \t\n]+", ID_WORD) // words (anything except ' ', '\t' or '\n')
("\n", ID_EOL) // newline characters
(".", ID_CHAR) // anything else is a plain character

;
}

};

Doing the Useful Work

We will use a setup, where we want the Spirit.Lex library to invoke a given function after any of of the generated tokens is recognized.
For this reason we need to implement a functor taking at least the generated token as an argument and returning a boolean value al-
lowing to stop the tokenization process. The default token type used in this example carries a token value of the type
boost::iterator_range<BaseIterator> pointing to the matched range in the underlying input sequence.

In this example the struct 'counter' is used as a functor counting the characters, words and lines in the analyzed input sequence by
identifying the matched tokens as passed from the Spirit.Lex library.

329

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/range/doc/utility_class.html#iter_range
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct counter
{

// the function operator gets called for each of the matched tokens
// c, l, w are references to the counters used to keep track of the numbers
template <typename Token>
bool operator()(Token const& t, std::size_t& c, std::size_t& w, std::size_t& l) const
{

switch (t.id()) {
case ID_WORD: // matched a word
// since we're using a default token type in this example, every
// token instance contains a `iterator_range<BaseIterator>` as its token
// attribute pointing to the matched character sequence in the input

++w; c += t.value().size();
break;

case ID_EOL: // matched a newline character
++l; ++c;
break;

case ID_CHAR: // matched something else
++c;
break;

}
return true; // always continue to tokenize

}
};

All what is left is to write some boilerplate code helping to tie together the pieces described so far. To simplify this example we call
the lex::tokenize() function implemented in Spirit.Lex (for a more detailed description of this function see here: FIXME), even
if we could have written a loop to iterate over the lexer iterators [first, last) as well.

Pulling Everything Together

The main function simply loads the given file into memory (as a std::string), instantiates an instance of the token definition
template using the correct iterator type (word_count_tokens<char const*>), and finally calls lex::tokenize, passing an
instance of the counter function object. The return value of lex::tokenize() will be true if the whole input sequence has been
successfully tokenized, and false otherwise.

330

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

int main(int argc, char* argv[])
{

// these variables are used to count characters, words and lines
 std::size_t c = 0, w = 0, l = 0;

// read input from the given file
 std::string str (read_from_file(1 == argc ? "word_count.input" : argv[1]));

// create the token definition instance needed to invoke the lexical analyzer
 word_count_tokens<lex::lexertl::lexer<> > word_count_functor;

// tokenize the given string, the bound functor gets invoked for each of
// the matched tokens
char const* first = str.c_str();
char const* last = &first[str.size()];
bool r = lex::tokenize(first, last, word_count_functor,

 boost::bind(counter(), _1, boost::ref(c), boost::ref(w), boost::ref(l)));

// print results
if (r) {

 std::cout << "lines: " << l << ", words: " << w
<< ", characters: " << c << "\n";

}
else {

 std::string rest(first, last);
 std::cout << "Lexical analysis failed\n" << "stopped at: \""

<< rest << "\"\n";
}
return 0;

}

Comparing Spirit.Lex with Flex

This example was deliberately chosen to be as much as possible similar to the equivalent Flex program (see below), which isn't too
different from what has to be written when using Spirit.Lex.

Note

Interestingly enough, performance comparisons of lexical analyzers written using Spirit.Lex with equivalent programs
generated by Flex show that both have comparable execution speeds! Generally, thanks to the highly optimized
Lexertl library and due its carefully designed integration with Spirit the abstraction penalty to be paid for using
Spirit.Lex is neglectible.

The remaining examples in this tutorial will use more sophisticated features of Spirit.Lex, mainly to allow further simplification of
the code to be written, while maintaining the similarity with corresponding features of Flex. Spirit.Lex has been designed to be as
similiar to Flex as possible. That is why this documentation will provide the corresponding Flex code for the shown Spirit.Lex examples
almost everywhere. So consequently, here is the Flex code corresponding to the example as shown above.

331

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://flex.sourceforge.net/
http://flex.sourceforge.net/
http://flex.sourceforge.net/
http://www.benhanson.net/lexertl.html
http://spirit.sourceforge.net
http://flex.sourceforge.net/
http://flex.sourceforge.net/
http://flex.sourceforge.net/
http://flex.sourceforge.net/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

%{
#define ID_WORD 1000
#define ID_EOL 1001
#define ID_CHAR 1002
int c = 0, w = 0, l = 0;

%}
%%
[^ \t\n]+ { return ID_WORD; }
\n { return ID_EOL; }
. { return ID_CHAR; }
%%
bool count(int tok)
{

switch (tok) {
case ID_WORD: ++w; c += yyleng; break;
case ID_EOL: ++l; ++c; break;
case ID_CHAR: ++c; break;
default:

return false;
}
return true;

}
void main()
{

int tok = EOF;
do {

 tok = yylex();
if (!count(tok))

break;
} while (EOF != tok);

 printf("%d %d %d\n", l, w, c);
}

Quickstart 2 - A better word counter using Spirit.Lex

People familiar with Flex will probably complain about the example from the section Lex Quickstart 1 - A word counter using
Spirit.Lex as being overly complex and not being written to leverage the possibilities provided by this tool. In particular the previous
example did not directly use the lexer actions to count the lines, words, and characters. So the example provided in this step of the
tutorial will show how to use semantic actions in Spirit.Lex. Even though this examples still counts textual elements, the purpose is
to introduce new concepts and configuration options along the lines (for the full example code see here: word_count_lexer.cpp).

Prerequisites

In addition to the only required #include specific to Spirit.Lex this example needs to include a couple of header files from the
Boost.Phoenix library. This example shows how to attach functors to token definitions, which could be done using any type of C++
technique resulting in a callable object. Using Boost.Phoenix for this task simplifies things and avoids adding dependencies to other
libraries (Boost.Phoenix is already in use for Spirit anyway).

#include <boost/spirit/include/lex_lexertl.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/spirit/include/phoenix_statement.hpp>
#include <boost/spirit/include/phoenix_algorithm.hpp>
#include <boost/spirit/include/phoenix_core.hpp>

To make all the code below more readable we introduce the following namespaces.

332

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://flex.sourceforge.net/
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/lex/word_count_lexer.cpp
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace lex = boost::spirit::lex;

To give a preview at what to expect from this example, here is the flex program which has been used as the starting point. The useful
code is directly included inside the actions associated with each of the token definitions.

%{
int c = 0, w = 0, l = 0;

%}
%%
[^ \t\n]+ { ++w; c += yyleng; }
\n { ++c; ++l; }
. { ++c; }
%%
main()
{
 yylex();
 printf("%d %d %d\n", l, w, c);
}

Semantic Actions in Spirit.Lex

Spirit.Lex uses a very similar way of associating actions with the token definitions (which should look familiar to anybody knowleg-
deable with Spirit as well): specifying the operations to execute inside of a pair of [] brackets. In order to be able to attach semantic
actions to token definitions for each of them there is defined an instance of a token_def<>.

template <typename Lexer>
struct word_count_tokens : lex::lexer<Lexer>
{
 word_count_tokens()

: c(0), w(0), l(0)
, word("[^ \t\n]+") // define tokens
, eol("\n")
, any(".")

{
using boost::spirit::lex::_start;
using boost::spirit::lex::_end;
using boost::phoenix::ref;

// associate tokens with the lexer
this->self

= word [++ref(w), ref(c) += distance(_start, _end)]
| eol [++ref(c), ++ref(l)]
| any [++ref(c)]
;

}

 std::size_t c, w, l;
 lex::token_def<> word, eol, any;
};

The semantics of the shown code is as follows. The code inside the [] brackets will be executed whenever the corresponding token
has been matched by the lexical analyzer. This is very similar to Flex, where the action code associated with a token definition gets
executed after the recognition of a matching input sequence. The code above uses function objects constructed using Boost.Phoenix,
but it is possible to insert any C++ function or function object as long as it exposes the proper interface. For more details on please
refer to the section Lexer Semantic Actions.

Associating Token Definitions with the Lexer

If you compare this code to the code from Lex Quickstart 1 - A word counter using Spirit.Lex with regard to the way how token
definitions are associated with the lexer, you will notice a different syntax being used here. In the previous example we have been

333

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://flex.sourceforge.net/
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

using the self.add() style of the API, while we here directly assign the token definitions to self, combining the different token
definitions using the | operator. Here is the code snippet again:

this->self
= word [++ref(w), ref(c) += distance(_1)]
| eol [++ref(c), ++ref(l)]
| any [++ref(c)]
;

This way we have a very powerful and natural way of building the lexical analyzer. If translated into English this may be read as:
The lexical analyer will recognize ('=') tokens as defined by any of ('|') the token definitions word, eol, and any.

A second difference to the previous example is that we do not explicitly specify any token ids to use for the separate tokens. Using
semantic actions to trigger some useful work has freed us from the need to define those. To ensure every token gets assigned a id
the Spirit.Lex library internally assigns unique numbers to the token definitions, starting with the constant defined by
boost::spirit::lex::min_token_id.

Pulling everything together

In order to execute the code defined above we still need to instantiate an instance of the lexer type, feed it from some input sequence
and create a pair of iterators allowing to iterate over the token sequence as created by the lexer. This code shows how to achieve
these steps:

int main(int argc, char* argv[])
{

typedef
 lex::lexertl::token<char const*, lex::omit, boost::mpl::false_>
 token_type;

typedef lex::lexertl::actor_lexer<token_type> lexer_type;

 word_count_tokens<lexer_type> word_count_lexer;

 std::string str (read_from_file(1 == argc ? "word_count.input" : argv[1]));
char const* first = str.c_str();
char const* last = &first[str.size()];

 lexer_type::iterator_type iter = word_count_lexer.begin(first, last);
 lexer_type::iterator_type end = word_count_lexer.end();

while (iter != end && token_is_valid(*iter))
++iter;

if (iter == end) {
 std::cout << "lines: " << word_count_lexer.l

<< ", words: " << word_count_lexer.w
<< ", characters: " << word_count_lexer.c
<< "\n";

}
else {

 std::string rest(first, last);
 std::cout << "Lexical analysis failed\n" << "stopped at: \""

<< rest << "\"\n";
}
return 0;

}

Specifying omit as the token attribute type generates a token class not holding any token attribute at all (not even the iterator
range of the matched input sequence), therefore optimizing the token, the lexer, and possibly the parser implementation as

334

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

much as possible. Specifying mpl::false_ as the 3rd template parameter generates a token type and an iterator, both holding
no lexer state, allowing for even more aggressive optimizations. As a result the token instances contain the token ids as the
only data member.
This defines the lexer type to use
Create the lexer object instance needed to invoke the lexical analysis
Read input from the given file, tokenize all the input, while discarding all generated tokens
Create a pair of iterators returning the sequence of generated tokens
Here we simply iterate over all tokens, making sure to break the loop if an invalid token gets returned from the lexer

Quickstart 3 - Counting Words Using a Parser

The whole purpose of integrating Spirit.Lex as part of the Spirit library was to add a library allowing the merger of lexical analysis
with the parsing process as defined by a Spirit grammar. Spirit parsers read their input from an input sequence accessed by iterators.
So naturally, we chose iterators to be used as the interface beween the lexer and the parser. A second goal of the lexer/parser integ-
ration was to enable the usage of different lexical analyzer libraries. The utilization of iterators seemed to be the right choice from
this standpoint as well, mainly because these can be used as an abstraction layer hiding implementation specifics of the used lexer
library. The picture below shows the common flow control implemented while parsing combined with lexical analysis.

Figure 7. The common flow control implemented while parsing combined with lexical analysis

Another problem related to the integration of the lexical analyzer with the parser was to find a way how the defined tokens syntactically
could be blended with the grammar definition syntax of Spirit. For tokens defined as instances of the token_def<> class the most
natural way of integration was to allow to directly use these as parser components. Semantically these parser components succeed
matching their input whenever the corresponding token type has been matched by the lexer. This quick start example will demonstrate
this (and more) by counting words again, simply by adding up the numbers inside of semantic actions of a parser (for the full example
code see here: word_count.cpp).

Prerequisites

This example uses two of the Spirit library components: Spirit.Lex and Spirit.Qi, consequently we have to #include the corresponding
header files. Again, we need to include a couple of header files from the Boost.Phoenix library. This example shows how to attach
functors to parser components, which could be done using any type of C++ technique resulting in a callable object. Using Boost.Phoenix
for this task simplifies things and avoids adding dependencies to other libraries (Boost.Phoenix is already in use for Spirit anyway).

#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/lex_lexertl.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/spirit/include/phoenix_statement.hpp>
#include <boost/spirit/include/phoenix_container.hpp>

To make all the code below more readable we introduce the following namespaces.

335

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://spirit.sourceforge.net
http://spirit.sourceforge.net
http://spirit.sourceforge.net
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/lex/word_count.cpp
http://spirit.sourceforge.net
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

using namespace boost::spirit;
using namespace boost::spirit::ascii;

Defining Tokens

If compared to the two previous quick start examples (Lex Quickstart 1 - A word counter using Spirit.Lex and Lex Quickstart 2 - A
better word counter using Spirit.Lex) the token definition class for this example does not reveal any surprises. However, it uses lexer
token definition macros to simplify the composition of the regular expressions, which will be described in more detail in the section
FIXME. Generally, any token definition is usable without modification from either a standalone lexical analyzer or in conjunction
with a parser.

template <typename Lexer>
struct word_count_tokens : lex::lexer<Lexer>
{
 word_count_tokens()

{
// define patterns (lexer macros) to be used during token definition
// below
this->self.add_pattern

("WORD", "[^ \t\n]+")
;

// define tokens and associate them with the lexer
 word = "{WORD}"; // reference the pattern 'WORD' as defined above

// this lexer will recognize 3 token types: words, newlines, and
// everything else
this->self.add

(word) // no token id is needed here
('\n') // characters are usable as tokens as well
(".", IDANY) // string literals will not be esacped by the library

;
}

// the token 'word' exposes the matched string as its parser attribute
 lex::token_def<std::string> word;
};

Using Token Definition Instances as Parsers

While the integration of lexer and parser in the control flow is achieved by using special iterators wrapping the lexical analyzer, we
still need a means of expressing in the grammar what tokens to match and where. The token definition class above uses three different
ways of defining a token:

• Using an instance of a token_def<>, which is handy whenever you need to specify a token attribute (for more information about
lexer related attributes please look here: Lexer Attributes).

• Using a single character as the token, in this case the character represents itself as a token, where the token id is the ASCII char-
acter value.

• Using a regular expression represented as a string, where the token id needs to be specified explicitly to make the token accessible
from the grammar level.

All three token definition methods require a different method of grammar integration. But as you can see from the following code
snippet, each of these methods are straightforward and blend the corresponding token instances naturally with the surrounding
Spirit.Qi grammar syntax.

336

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parser integrationToken definition

The token_def<> instance is directly usable as a parser component. Parsing of this component will succeed
if the regular expression used to define this has been matched successfully.

token_def<>

The single character is directly usable in the grammar. However, under certain circumstances it needs to be
wrapped by a char_() parser component. Parsing of this component will succeed if the single character
has been matched.

single character

To use an explicit token id in a Spirit.Qi grammar you are required to wrap it with the special token()
parser component. Parsing of this component will succeed if the current token has the same token id as
specified in the expression token(<id>).

explicit token id

The grammar definition below uses each of the three types demonstrating their usage.

template <typename Iterator>
struct word_count_grammar : qi::grammar<Iterator>
{

template <typename TokenDef>
 word_count_grammar(TokenDef const& tok)

: word_count_grammar::base_type(start)
, c(0), w(0), l(0)

{
using boost::phoenix::ref;
using boost::phoenix::size;

 start = *(tok.word [++ref(w), ref(c) += size(_1)]
| lit('\n') [++ref(c), ++ref(l)]
| qi::token(IDANY) [++ref(c)]
)

;
}

 std::size_t c, w, l;
 qi::rule<Iterator> start;
};

As already described (see: Attributes), the Spirit.Qi parser library builds upon a set of of fully attributed parser components. Con-
sequently, all token definitions support this attribute model as well. The most natural way of implementing this was to use the token
values as the attributes exposed by the parser component corresponding to the token definition (you can read more about this topic
here: About Tokens and Token Values). The example above takes advantage of the full integration of the token values as the
token_def<>'s parser attributes: the word token definition is declared as a token_def<std::string>, making every instance
of a word token carry the string representation of the matched input sequence as its value. The semantic action attached to tok.word
receives this string (represented by the _1 placeholder) and uses it to calculate the number of matched characters: ref(c) +=
size(_1).

Pulling Everything Together

The main function needs to implement a bit more logic now as we have to initialize and start not only the lexical analysis but the
parsing process as well. The three type definitions (typedef statements) simplify the creation of the lexical analyzer and the grammar.
After reading the contents of the given file into memory it calls the function tokenize_and_parse() to initialize the lexical ana-
lysis and parsing processes.

337

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

int main(int argc, char* argv[])
{

typedef lex::lexertl::token<
char const*, boost::mpl::vector<std::string>

> token_type;

typedef lex::lexertl::lexer<token_type> lexer_type;

typedef word_count_tokens<lexer_type>::iterator_type iterator_type;

// now we use the types defined above to create the lexer and grammar
// object instances needed to invoke the parsing process

 word_count_tokens<lexer_type> word_count; // Our lexer
 word_count_grammar<iterator_type> g (word_count); // Our parser

// read in the file int memory
 std::string str (read_from_file(1 == argc ? "word_count.input" : argv[1]));

char const* first = str.c_str();
char const* last = &first[str.size()];

bool r = lex::tokenize_and_parse(first, last, word_count, g);

if (r) {
 std::cout << "lines: " << g.l << ", words: " << g.w

<< ", characters: " << g.c << "\n";
}
else {

 std::string rest(first, last);
 std::cerr << "Parsing failed\n" << "stopped at: \""

<< rest << "\"\n";
}
return 0;

}

Define the token type to be used: std::string is available as the type of the token attribute
Define the lexer type to use implementing the state machine
Define the iterator type exposed by the lexer type
Parsing is done based on the the token stream, not the character stream read from the input. The function token-
ize_and_parse() wraps the passed iterator range [first, last) by the lexical analyzer and uses its exposed iterators to
parse the toke stream.

Abstracts

Lexer Primitives

About Tokens and Token Values

As already discussed, lexical scanning is the process of analyzing the stream of input characters and separating it into strings called
tokens, most of the time separated by whitespace. The different token types recognized by a lexical analyzer often get assigned
unique integer token identifiers (token ids). These token ids are normally used by the parser to identifiy the current token without
having to look at the matched string again. The Spirit.Lex library is not different with respect to this, as it uses the token ids as the
main means of identification of the different token types defined for a particular lexical analyzer. However, it is different from
commonly used lexical analyzers in the sense that it returns (references to) instances of a (user defined) token class to the user. The
only limitation of this token class is that it must carry at least the token id of the token it represents. For more information about the
interface a user defined token type has to expose please look at the Token Class reference. The library provides a default token type
based on the Lexertl library which should be sufficient in most cases: the lex::lexertl::token<> type. This section focusses
on the description of general features a token class may implement and how this integrates with the other parts of the Spirit.Lex library.

338

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.benhanson.net/lexertl.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The Anatomy of a Token

It is very important to understand the difference between a token definition (represented by the lex::token_def<> template) and
a token itself (for instance represented by the lex::lexertl::token<> template).

The token definition is used to describe the main features of a particular token type, especially:

• to simplify the definition of a token type using a regular expression pattern applied while matching this token type,

• to associate a token type with a particular lexer state,

• to optionally assign a token id to a token type,

• to optionally associate some code to execute whenever an instance of this token type has been matched,

• and to optionally specify the attribute type of the token value.

The token itself is a data structure returned by the lexer iterators. Dereferencing a lexer iterator returns a reference to the last matched
token instance. It encapsulates the part of the underlying input sequence matched by the regular expression used during the definiton
of this token type. Incrementing the lexer iterator invokes the lexical analyzer to match the next token by advancing the underlying
input stream. The token data structure contains at least the token id of the matched token type, allowing to identify the matched
character sequence. Optionally, the token instance may contain a token value and/or the lexer state this token instance was matched
in. The following figure shows the schematic structure of a token.

Figure 8. The structure of a token

The token value and the lexer state the token has been recognized in may be omitted for optimization reasons, thus avoiding the need
for the token to carry more data than actually required. This configuration can be achieved by supplying appropriate template para-
meters for the lex::lexertl::token<> template while defining the token type.

The lexer iterator returns the same token type for each of the different matched token definitions. To accomodate for the possible
different token value types exposed by the various token types (token definitions), the general type of the token value is a
Boost.Variant. At a minimum (for the default configuration) this token value variant will be configured to always hold a
boost::iterator_range containing the pair of iterators pointing to the matched input sequence for this token instance.

339

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/html/variant.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/range/doc/utility_class.html#iter_range
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

If the lexical analyzer is used in conjunction with a Spirit.Qi parser, the stored boost::iterator_range token
value will be converted to the requested token type (parser attribute) exactly once. This happens at the time of the
first access to the token value requiring the corresponding type conversion. The converted token value will be stored
in the Boost.Variant replacing the initially stored iterator range. This avoids having to convert the input sequence
to the token value more than once, thus optimizing the integration of the lexer with Spirit.Qi, even during parser
backtracking.

Here is the template prototype of the lex::lexertl::token<> template:

template <
typename Iterator = char const*,
typename AttributeTypes = mpl::vector0<>,
typename HasState = mpl::true_

>
struct lexertl_token;

where:

Iterator This is the type of the iterator used to access the underlying input stream. It defaults to a plain char const*.

AttributeTypes This is either a mpl sequence containing all attribute types used for the token definitions or the type omit.
If the mpl sequence is empty (which is the default), all token instances will store a boost::iterat-
or_range<Iterator> pointing to the start and the end of the matched section in the input stream. If the
type is omit, the generated tokens will contain no token value (attribute) at all.

HasState This is either mpl::true_ or mpl::false_, allowing control as to whether the generated token instances
will contain the lexer state they were generated in. The default is mpl::true_, so all token instances will contain
the lexer state.

Normally, during construction, a token instance always holds the boost::iterator_range as its token value, unless it has been
defined using the omit token value type. This iterator range then is converted in place to the requested token value type (attribute)
when it is requested for the first time.

The Physiognomy of a Token Definition

The token definitions (represented by the lex::token_def<> template) are normally used as part of the definition of the lexical
analyzer. At the same time a token definition instance may be used as a parser component in Spirit.Qi.

The template prototype of this class is shown here:

template<
typename Attribute = unused_type,
typename Char = char

>
class token_def;

where:

Attribute This is the type of the token value (attribute) supported by token instances representing this token type. This attribute
type is exposed to the Spirit.Qi library, whenever this token definition is used as a parser component. The default
attribute type is unused_type, which means the token instance holds a boost::iterator_range pointing to the
start and the end of the matched section in the input stream. If the attribute is omit the token instance will expose
no token type at all. Any other type will be used directly as the token value type.

Char This is the value type of the iterator for the underlying input sequence. It defaults to char.

340

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/range/doc/utility_class.html#iter_range
http://www.boost.org/doc/html/variant.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/range/doc/utility_class.html#iter_range
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/range/doc/utility_class.html#iter_range
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/range/doc/utility_class.html#iter_range
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/range/doc/utility_class.html#iter_range
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The semantics of the template parameters for the token type and the token definition type are very similar and interdependent. As a
rule of thumb you can think of the token definition type as the means of specifying everything related to a single specific token type
(such as identifier or integer). On the other hand the token type is used to define the general properties of all token instances
generated by the Spirit.Lex library.

Important

If you don't list any token value types in the token type definition declaration (resulting in the usage of the default
boost::iterator_range token type) everything will compile and work just fine, just a bit less efficient. This is
because the token value will be converted from the matched input sequence every time it is requested.

But as soon as you specify at least one token value type while defining the token type you'll have to list all value
types used for lex::token_def<> declarations in the token definition class, otherwise compilation errors will
occur.

Examples of using lex::lexertl::token<>

Let's start with some examples. We refer to one of the Spirit.Lex examples (for the full source code of this example please see ex-
ample4.cpp).

The first code snippet shows an excerpt of the token definition class, the definition of a couple of token types. Some of the token
types do not expose a special token value (if_, else_, and while_). Their token value will always hold the iterator range of the
matched input sequence. The token definitions for the identifier and the integer constant are specialized to expose an explicit
token type each: std::string and unsigned int.

// these tokens expose the iterator_range of the matched input sequence
lex::token_def<> if_, else_, while_;

// The following two tokens have an associated attribute type, 'identifier'
// carries a string (the identifier name) and 'constant' carries the
// matched integer value.
//
// Note: any token attribute type explicitly specified in a token_def<>
// declaration needs to be listed during token type definition as
// well (see the typedef for the token_type below).
//
// The conversion of the matched input to an instance of this type occurs
// once (on first access), which makes token attributes as efficient as
// possible. Moreover, token instances are constructed once by the lexer
// library. From this point on tokens are passed by reference only,
// avoiding them being copied around.
lex::token_def<std::string> identifier;
lex::token_def<unsigned int> constant;

As the parsers generated by Spirit.Qi are fully attributed, any Spirit.Qi parser component needs to expose a certain type as its parser
attribute. Naturally, the lex::token_def<> exposes the token value type as its parser attribute, enabling a smooth integration with
Spirit.Qi.

The next code snippet demonstrates how the required token value types are specified while defining the token type to use. All of the
token value types used for at least one of the token definitions have to be re-iterated for the token definition as well.

341

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/range/doc/utility_class.html#iter_range
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/lex/example4.cpp
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/lex/example4.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// This is the lexer token type to use. The second template parameter lists
// all attribute types used for token_def's during token definition (see
// calculator_tokens<> above). Here we use the predefined lexertl token
// type, but any compatible token type may be used instead.
//
// If you don't list any token attribute types in the following declaration
// (or just use the default token type: lexertl_token<base_iterator_type>)
// it will compile and work just fine, just a bit less efficient. This is
// because the token attribute will be generated from the matched input
// sequence every time it is requested. But as soon as you specify at
// least one token attribute type you'll have to list all attribute types
// used for token_def<> declarations in the token definition class above,
// otherwise compilation errors will occur.
typedef lex::lexertl::token<
 base_iterator_type, boost::mpl::vector<unsigned int, std::string>
> token_type;

To avoid the token to have a token value at all, the special tag omit can be used: token_def<omit> and lex-
ertl_token<base_iterator_type, omit>.

Tokenizing Input Data

The tokenize function

The tokenize() function is a helper function simplifying the usage of a lexer in a standalone fashion. For instance, you may have
a standalone lexer where all that functional requirements are implemented inside lexer semantic actions. A good example for this is
the word_count_lexer described in more detail in the section Lex Quickstart 2 - A better word counter using Spirit.Lex.

template <typename Lexer>
struct word_count_tokens : lex::lexer<Lexer>
{
 word_count_tokens()

: c(0), w(0), l(0)
, word("[^ \t\n]+") // define tokens
, eol("\n")
, any(".")

{
using boost::spirit::lex::_start;
using boost::spirit::lex::_end;
using boost::phoenix::ref;

// associate tokens with the lexer
this->self

= word [++ref(w), ref(c) += distance(_start, _end)]
| eol [++ref(c), ++ref(l)]
| any [++ref(c)]
;

}

 std::size_t c, w, l;
 lex::token_def<> word, eol, any;
};

The construct used to tokenize the given input, while discarding all generated tokens is a common application of the lexer. For this
reason Spirit.Lex exposes an API function tokenize() minimizing the code required:

342

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/lex/word_count_lexer.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// Read input from the given file
std::string str (read_from_file(1 == argc ? "word_count.input" : argv[1]));

word_count_tokens<lexer_type> word_count_lexer;
std::string::iterator first = str.begin();

// Tokenize all the input, while discarding all generated tokens
bool r = tokenize(first, str.end(), word_count_lexer);

This code is completely equivalent to the more verbose version as shown in the section Lex Quickstart 2 - A better word counter
using Spirit.Lex. The function tokenize() will return either if the end of the input has been reached (in this case the return value
will be true), or if the lexer couldn't match any of the token definitions in the input (in this case the return value will be false and
the iterator first will point to the first not matched character in the input sequence).

The prototype of this function is:

template <typename Iterator, typename Lexer>
bool tokenize(Iterator& first, Iterator last, Lexer const& lex
, typename Lexer::char_type const* initial_state = 0);

where:

Iterator& first The beginning of the input sequence to tokenize. The value of this iterator will be updated by
the lexer, pointing to the first not matched character of the input after the function returns.

Iterator last The end of the input sequence to tokenize.

Lexer const& lex The lexer instance to use for tokenization.

Lexer::char_type const* initial_state This optional parameter can be used to specify the initial lexer state for tokenization.

A second overload of the tokenize() function allows specifying of any arbitrary function or function object to be called for each
of the generated tokens. For some applications this is very useful, as it might avoid having lexer semantic actions. For an example
of how to use this function, please have a look at word_count_functor.cpp:

The main function simply loads the given file into memory (as a std::string), instantiates an instance of the token definition
template using the correct iterator type (word_count_tokens<char const*>), and finally calls lex::tokenize, passing an
instance of the counter function object. The return value of lex::tokenize() will be true if the whole input sequence has been
successfully tokenized, and false otherwise.

343

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/lex/word_count_lexer.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

int main(int argc, char* argv[])
{

// these variables are used to count characters, words and lines
 std::size_t c = 0, w = 0, l = 0;

// read input from the given file
 std::string str (read_from_file(1 == argc ? "word_count.input" : argv[1]));

// create the token definition instance needed to invoke the lexical analyzer
 word_count_tokens<lex::lexertl::lexer<> > word_count_functor;

// tokenize the given string, the bound functor gets invoked for each of
// the matched tokens
char const* first = str.c_str();
char const* last = &first[str.size()];
bool r = lex::tokenize(first, last, word_count_functor,

 boost::bind(counter(), _1, boost::ref(c), boost::ref(w), boost::ref(l)));

// print results
if (r) {

 std::cout << "lines: " << l << ", words: " << w
<< ", characters: " << c << "\n";

}
else {

 std::string rest(first, last);
 std::cout << "Lexical analysis failed\n" << "stopped at: \""

<< rest << "\"\n";
}
return 0;

}

Here is the prototype of this tokenize() function overload:

template <typename Iterator, typename Lexer, typename F>
bool tokenize(Iterator& first, Iterator last, Lexer const& lex, F f
, typename Lexer::char_type const* initial_state = 0);

where:

Iterator& first The beginning of the input sequence to tokenize. The value of this iterator will be updated by
the lexer, pointing to the first not matched character of the input after the function returns.

Iterator last The end of the input sequence to tokenize.

Lexer const& lex The lexer instance to use for tokenization.

F f A function or function object to be called for each matched token. This function is expected
to have the prototype: bool f(Lexer::token_type);. The tokenize() function will
return immediately if F returns `false.

Lexer::char_type const* initial_state This optional parameter can be used to specify the initial lexer state for tokenization.

The generate_static function

Lexer Semantic Actions

The main task of a lexer normally is to recognize tokens in the input. Traditionally this has been complemented with the possibility
to execute arbitrary code whenever a certain token has been detected. Spirit.Lex has been designed to support this mode of operation
as well. We borrow from the concept of semantic actions for parsers (Spirit.Qi) and generators (Spirit.Karma). Lexer semantic actions
may be attached to any token definition. These are C++ functions or function objects that are called whenever a token definition

344

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

successfully recognizes a portion of the input. Say you have a token definition D, and a C++ function f, you can make the lexer call
f whenever it matches an input by attaching f:

D[f]

The expression above links f to the token definition, D. The required prototype of f is:

void f (Iterator& start, Iterator& end, pass_flag& matched, Idtype& id, Context& ctx);

where:

Iterator& start This is the iterator pointing to the begin of the matched range in the underlying input sequence. The
type of the iterator is the same as specified while defining the type of the lexertl::actor_lex-
er<...> (its first template parameter). The semantic action is allowed to change the value of this
iterator influencing, the matched input sequence.

Iterator& end This is the iterator pointing to the end of the matched range in the underlying input sequence. The type
of the iterator is the same as specified while defining the type of the lexertl::actor_lexer<...>
(its first template parameter). The semantic action is allowed to change the value of this iterator influ-
encing, the matched input sequence.

pass_flag& matched This value is pre/initialized to pass_normal. If the semantic action sets it to pass_fail this behaves
as if the token has not been matched in the first place. If the semantic action sets this to pass_ignore
the lexer ignores the current token and tries to match a next token from the input.

Idtype& id This is the token id of the type Idtype (most of the time this will be a std::size_t) for the matched
token. The semantic action is allowed to change the value of this token id, influencing the if of the
created token.

Context& ctx This is a reference to a lexer specific, unspecified type, providing the context for the current lexer state.
It can be used to access different internal data items and is needed for lexer state control from inside a
semantic action.

When using a C++ function as the semantic action the following prototypes are allowed as well:

void f (Iterator& start, Iterator& end, pass_flag& matched, Idtype& id);
void f (Iterator& start, Iterator& end, pass_flag& matched);
void f (Iterator& start, Iterator& end);
void f ();

Important

In order to use lexer semantic actions you need to use type lexertl::actor_lexer<> as your lexer class (instead
of the type lexertl::lexer<> as described in earlier examples).

The context of a lexer semantic action

The last parameter passed to any lexer semantic action is a reference to an unspecified type (see the Context type in the table above).
This type is unspecified because it depends on the token type returned by the lexer. It is implemented in the internals of the iterator
type exposed by the lexer. Nevertheless, any context type is expected to expose a couple of functions allowing to influence the beha-
vior of the lexer. The following table gives an overview and a short description of the available functionality.

345

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 8. Functions exposed by any context passed to a lexer semantic action

DescriptionName

The function get_eoi() may be used by to access the end iterator of the input stream
the lexer has been initialized with

Iterator const& get_eoi() const

The function more() tells the lexer that the next time it matches a rule, the corres-
ponding token should be appended onto the current token value rather than replacing
it.

void more()

The function less() returns an iterator positioned to the nth input character beyond
the current token start iterator (i.e. by passing the return value to the parameter end
it is possible to return all but the first n characters of the current token back to the input
stream.

Iterator const& less(Iterator

const& it, int n)

The function lookahead() can be used to implement lookahead for lexer engines
not supporting constructs like flex' a/b (match a, but only when followed by b). It
invokes the lexer on the input following the current token without actually moving
forward in the input stream. The function returns whether the lexer was able to match
a token with the given token-id id.

bool lookahead(std::size_t id)

The functions get_state() and set_state() may be used to introspect and change
the current lexer state.

std::size_t get_state() const

and void set_state(std::size_t

state)

The functions get_value() and set_value() may be used to introspect and change
the current token value.

token_value_type get_value()

const and void set_value(Value

const&)

Lexer Semantic Actions Using Phoenix

Even if it is possible to write your own function object implementations (i.e. using Boost.Lambda or Boost.Bind), the preferred way
of defining lexer semantic actions is to use Boost.Phoenix. In this case you can access the parameters described above by using the
predefined Spirit placeholders:

346

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 9. Predefined Phoenix placeholders for lexer semantic actions

DescriptionPlaceholder

Refers to the iterator pointing to the beginning of the matched input sequence. Any modifications to this iterator
value will be reflected in the generated token.

_start

Refers to the iterator pointing past the end of the matched input sequence. Any modifications to this iterator value
will be reflected in the generated token.

_end

References the value signaling the outcome of the semantic action. This is pre-initialized to
lex::pass_flags::pass_normal. If this is set to lex::pass_flags::pass_fail, the lexer will behave
as if no token has been matched, if is set to lex::pass_flags::pass_ignore, the lexer will ignore the current
match and proceed trying to match tokens from the input.

_pass

Refers to the token id of the token to be generated. Any modifications to this value will be reflected in the generated
token.

_tokenid

Refers to the value the next token will be initialized from. Any modifications to this value will be reflected in
the generated token.

_val

Refers to the lexer state the input has been match in. Any modifications to this value will be reflected in the
lexer itself (the next match will start in the new state). The currently generated token is not affected by changes
to this variable.

_state

References the end iterator of the overall lexer input. This value cannot be changed._eoi

The context object passed as the last parameter to any lexer semantic action is not directly accessible while using Boost.Phoenix
expressions. We rather provide predefine Phoenix functions allowing to invoke the different support functions as mentioned above.
The following table lists the available support functions and describes their functionality:

Table 10. Support functions usable from Phoenix expressions inside lexer semantic actions

DescriptionPhoenix functionPlain function

The function more() tells the lexer that the next time it matches a rule, the corres-
ponding token should be appended onto the current token value rather than repla-
cing it.

more()ctx.more()

The function less() takes a single integer parameter n and returns an iterator
positioned to the nth input character beyond the current token start iterator (i.e.
by assigning the return value to the placeholder _end it is possible to return all
but the first n characters of the current token back to the input stream.

less(n)ctx.less()

The function lookahead() takes a single parameter specifying the token to match
in the input. The function can be used for instance to implement lookahead for
lexer engines not supporting constructs like flex' a/b (match a, but only when
followed by b). It invokes the lexer on the input following the current token without
actually moving forward in the input stream. The function returns whether the
lexer was able to match the specified token.

l o o k a -

head(std::size_t)

o r l o o k a -

head(token_def)

c t x . l o o k a -

head()

The Static Lexer Model

The documentation of Spirit.Lex so far mostly was about describing the features of the dynamic model, where the tables needed for
lexical analysis are generated from the regular expressions at runtime. The big advantage of the dynamic model is its flexibility, and
its integration with the Spirit library and the C++ host language. Its big disadvantage is the need to spend additional runtime to

347

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

generate the tables, which especially might be a limitation for larger lexical analyzers. The static model strives to build upon the
smooth integration with Spirit and C++, and reuses large parts of the Spirit.Lex library as described so far, while overcoming the
additional runtime requirements by using pre-generated tables and tokenizer routines. To make the code generation as simple as
possible, the static model reuses the token definition types developed for the dynamic model without any changes. As will be shown
in this section, building a code generator based on an existing token definition type is a matter of writing 3 lines of code.

Assuming you already built a dynamic lexer for your problem, there are two more steps needed to create a static lexical analyzer
using Spirit.Lex:

1. generating the C++ code for the static analyzer (including the tokenization function and corresponding tables), and

2. modifying the dynamic lexical anlyzer to use the generated code.

Both steps are described in more detail in the two sections below (for the full source code used in this example see the code here:
the common token definition, the code generator, the generated code, and the static lexical analyzer).

But first we provide the code snippets needed to further understand the descriptions. Both, the definition of the used token identifier
and the of the token definition class in this example are put into a separate header file to make these available to the code generator
and the static lexical analyzer.

enum tokenids
{
 IDANY = boost::spirit::lex::min_token_id + 1,
};

The important point here is, that the token definition class is not different from a similar class to be used for a dynamic lexical ana-
lyzer. The library has been designed in a way, that all components (dynamic lexical analyzer, code generator, and static lexical ana-
lyzer) can reuse the very same token definition syntax.

// This token definition class can be used without any change for all three
// possible use cases: a dynamic lexical analyzer, a code generator, and a
// static lexical analyzer.
template <typename BaseLexer>
struct word_count_tokens : boost::spirit::lex::lexer<BaseLexer>
{
 word_count_tokens()

: word_count_tokens::base_type(
 boost::spirit::lex::match_flags::match_not_dot_newline)

{
// define tokens and associate them with the lexer

 word = "[^ \t\n]+";
this->self = word | '\n' | boost::spirit::lex::token_def<>(".", IDANY);

}

 boost::spirit::lex::token_def<std::string> word;
};

The only thing changing between the three different use cases is the template parameter used to instantiate a concrete token definition.
Fot the dynamic model and the code generator you probably will use the lex::lexertl::lexer<> template, where for the static
model you will use the lex::lexertl::static_lexer<> type as the template parameter.

This example not only shows how to build a static lexer, but it additionally demonstrates how such a lexer can be used for parsing
in conjunction with a Spirit.Qi grammar. For completeness, we provide the simple grammar used in this example. As you can see,
this grammar does not have any dependencies on the static lexical analyzer, and for this reason it is not different from a grammar
used either without a lexer or using a dynamic lexical analyzer as described before.

348

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/lex/static_lexer/word_count_tokens.hpp
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/lex/static_lexer/word_count_generate.cpp
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/lex/static_lexer/word_count_static.hpp
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/lex/static_lexer/word_count_static.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// This is an ordinary grammar definition following the rules defined by
// Spirit.Qi. There is nothing specific about it, except it gets the token
// definition class instance passed to the constructor to allow accessing the
// embedded token_def<> instances.
template <typename Iterator>
struct word_count_grammar : qi::grammar<Iterator>
{

template <typename TokenDef>
 word_count_grammar(TokenDef const& tok)

: word_count_grammar::base_type(start)
, c(0), w(0), l(0)

{
using boost::phoenix::ref;
using boost::phoenix::size;

// associate the defined tokens with the lexer, at the same time
// defining the actions to be executed

 start = *(tok.word [++ref(w), ref(c) += size(_1)]
| lit('\n') [++ref(l), ++ref(c)]
| qi::token(IDANY) [++ref(c)]
)

;
}

 std::size_t c, w, l; // counter for characters, words, and lines
 qi::rule<Iterator> start;
};

Generating the Static Analyzer

The first additional step to perform in order to create a static lexical analyzer is to create a small standalone program for creating the
lexer tables and the corresponding tokenization function. For this purpose the Spirit.Lex library exposes a special API - the function
generate_static() . It implements the whole code generator, no further code is needed. All what it takes to invoke this function
is to supply a token definition instance, an output stream to use to generate the code to, and an optional string to be used as a suffix
for the name of the generated function. All in all just a couple lines of code.

int main(int argc, char* argv[])
{

// create the lexer object instance needed to invoke the generator
 word_count_tokens<lex::lexertl::lexer<> > word_count; // the token definition

// open the output file, where the generated tokenizer function will be
// written to

 std::ofstream out(argc < 2 ? "word_count_static.hpp" : argv[1]);

// invoke the generator, passing the token definition, the output stream
// and the name suffix of the tables and functions to be generated
//
// The suffix "wc" used below results in a type lexertl::static_::lexer_wc
// to be generated, which needs to be passed as a template parameter to the
// lexertl::static_lexer template (see word_count_static.cpp).
return lex::lexertl::generate_static_dfa(word_count, out, "wc") ? 0 : -1;

}

The shown code generator will generate output, which should be stored in a file for later inclusion into the static lexical analzyer as
shown in the next topic (the full generated code can be viewed here).

349

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/lex/static_lexer/word_count_static.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

The generated code will have compiled in the version number of the current Spirit.Lex library. This version number
is used at compilation time of your static lexer object to ensure this is compiled using exactly the same version of
the Spirit.Lex library as the lexer tables have been generated with. If the versions do not match you will see an
compilation error mentioning an incompatible_static_lexer_version.

Modifying the Dynamic Analyzer

The second required step to convert an existing dynamic lexer into a static one is to change your main program at two places. First,
you need to change the type of the used lexer (that is the template parameter used while instantiating your token definition class).
While in the dynamic model we have been using the lex::lexertl::lexer<> template, we now need to change that to the
lex::lexertl::static_lexer<> type. The second change is tightly related to the first one and involves correcting the corres-
ponding #include statement to:

#include <boost/spirit/include/lex_static_lexertl.hpp>

Otherwise the main program is not different from an equivalent program using the dynamic model. This feature makes it easy to
develop the lexer in dynamic mode and to switch to the static mode after the code has been stabilized. The simple generator applic-
ation shown above enables the integration of the code generator into any existing build process. The following code snippet provides
the overall main function, highlighting the code to be changed.

350

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

int main(int argc, char* argv[])
{

// Define the token type to be used: 'std::string' is available as the type
// of the token value.
typedef lex::lexertl::token<

char const*, boost::mpl::vector<std::string>
> token_type;

// Define the lexer type to be used as the base class for our token
// definition.
//
// This is the only place where the code is different from an equivalent
// dynamic lexical analyzer. We use the `lexertl::static_lexer<>` instead of
// the `lexertl::lexer<>` as the base class for our token defintion type.
//
// As we specified the suffix "wc" while generating the static tables we
// need to pass the type lexertl::static_::lexer_wc as the second template
// parameter below (see word_count_generate.cpp).
typedef lex::lexertl::static_lexer<

 token_type, lex::lexertl::static_::lexer_wc
> lexer_type;

// Define the iterator type exposed by the lexer.
typedef word_count_tokens<lexer_type>::iterator_type iterator_type;

// Now we use the types defined above to create the lexer and grammar
// object instances needed to invoke the parsing process.

 word_count_tokens<lexer_type> word_count; // Our lexer
 word_count_grammar<iterator_type> g (word_count); // Our parser

// Read in the file into memory.
 std::string str (read_from_file(1 == argc ? "word_count.input" : argv[1]));

char const* first = str.c_str();
char const* last = &first[str.size()];

// Parsing is done based on the the token stream, not the character stream.
bool r = lex::tokenize_and_parse(first, last, word_count, g);

if (r) { // success
 std::cout << "lines: " << g.l << ", words: " << g.w

<< ", characters: " << g.c << "\n";
}
else {

 std::string rest(first, last);
 std::cerr << "Parsing failed\n" << "stopped at: \""

<< rest << "\"\n";
}
return 0;

}

Important

The generated code for the static lexer contains the token ids as they have been assigned, either explicitly by the
programmer or implicitely during lexer construction. It is your responsibility to make sure that all instances of a
particular static lexer type use exactly the same token ids. The constructor of the lexer object has a second (default)
parameter allowing it to designate a starting token id to be used while assigning the ids to the token definitions. The
requirement above is fullfilled by default as long as no first_id is specified during construction of the static lexer
instances.

351

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Quick Reference
This quick reference section is provided for convenience. You can use this section as a sort of a "cheat-sheet" on the most commonly
used Lex components. It is not intended to be complete, but should give you an easy way to recall a particular component without
having to dig through pages and pages of reference doumentation.

Common Notation

Notation

L Lexer type

l, a, b, c, d Lexer objects

Iterator The type of an iterator referring to the underlying input sequence

IdType The token id type

Context The lexer components Context type

ch Character-class specific character (See Character Class Types)

Ch Character-class specific character type (See Character Class Types)

str Character-class specific string (See Character Class Types)

Str Character-class specific string type (See Character Class Types)

Attrib An attribute type

fa A semantic action function with a signature: void f(Iterator&, Iterator&,

pass_flag&, Idtype&, Context&).

Primitive Lexer Components

DescriptionAttributeExpression

Matches chn/ach

Matches chn/achar_(ch)

Matches regular expression strn/astr

Matches regular expression strn/astring(str)

Matches the immediate argumentAttribtoken_def<Attrib>

Matches any of the expressions a or bn/aa | b

Call semantic action fa (after matching l).Attribute of ll[fa]

Note

The column Attribute in the table above lists the parser attribute exposed by the lexer component if it is used as a
parser (see Attribute). A 'n/a' in this columns means the lexer component is not usable as a parser.

352

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Semantic Actions

Has the form:

l[f]

where f is a function with the signatures:

void f();
void f(Iterator&, Iterator&);
void f(Iterator&, Iterator&, pass_flag&);
void f(Iterator&, Iterator&, pass_flag&, Idtype&);
void f(Iterator&, Iterator&, pass_flag&, Idtype&, Context&);

You can use Boost.Bind to bind member functions. For function objects, the allowed signatures are:

void operator()(unused_type, unused_type, unused_type, unused_type, unused_type) const;
void operator()(Iterator&, Iterator&, unused_type, unused_type, unused_type) const;
void operator()(Iterator&, Iterator&, pass_flag&, unused_type, unused_type) const;
void operator()(Iterator&, Iterator&, pass_flag&, Idtype&, unused_type) const;
void operator()(Iterator&, Iterator&, pass_flag&, Idtype&, Context&) const;

The unused_type is used in the signatures above to signify 'don't care'.

For more information see Lexer Semantic Actions.

Phoenix

Boost.Phoenix makes it easier to attach semantic actions. You just inline your lambda expressions:

l[phoenix-lambda-expression]

Spirit.Lex provides some Boost.Phoenix placeholders to access important information from the Context that are otherwise difficult
to extract.

Spirit.Lex specific Phoenix placeholders

_start, _end Iterators pointing to the begin and the end of the matched input sequence.

_pass Assign false to _pass to force the current match to fail.

_tokenid The token id of the matched token.

_val The token value of the matched token.

_state The lexer state the token has been matched in.

_eoi Iterator referring to the current end of the input sequence.

Tip

All of the placeholders in the list above (except _eoi) can be changed from the inside of the semantic action allowing
to modify the lexer behavior. They are defined in the namespace boost::spirit::lex.

For more information see Lexer Semantic Actions.

353

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/bind/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Supported Regular Expressions

354

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 11. Regular expressions support

MeaningExpression

Match any character xx

Match any except newline (or optionally any character).

All characters taken as literals between double quotes, except escape sequences"..."

A character class; in this case matches x, y or z[xyz]

A character class with a range in it; matches a, b any letter from j through o or a Z[abj-oZ]

A negated character class i.e. any character but those in the class. In this case, any character except an
uppercase letter

[^A-Z]

Zero or more r's (greedy), where r is any regular expressionr*

Zero or more r's (abstemious), where r is any regular expressionr*?

One or more r's (greedy)r+

One or more r's (abstemious)r+?

Zero or one r's (greedy), i.e. optionalr?

Zero or one r's (abstemious), i.e. optionalr??

Anywhere between two and five r's (greedy)r{2,5}

Anywhere between two and five r's (abstemious)r{2,5}?

Two or more r's (greedy)r{2,}

Two or more r's (abstemious)r{2,}?

Exactly four r'sr{4}

The macro NAME (see below){NAME}

The literal string [xyz]\"foo"[xyz]\"foo"

If X is a, b, e, n, r, f, t, v then the ANSI-C interpretation of \x. Otherwise a literal X (used to escape
operators such as *)

\X

A NUL character (ASCII code 0)\0

The character with octal value 123\123

The character with hexadecimal value 2a\x2a

A named control character X.\cX

A shortcut for Alert (bell).\a

A shortcut for Backspace\b

355

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

MeaningExpression

A shortcut for ESC (escape character 0x1b)\e

A shortcut for newline\n

A shortcut for carriage return\r

A shortcut for form feed 0x0c\f

A shortcut for horizontal tab 0x09\t

A shortcut for vertical tab 0x0b\v

A shortcut for [0-9]\d

A shortcut for [^0-9]\D

A shortcut for [\x20\t\n\r\f\v]\s

A shortcut for [^\x20\t\n\r\f\v]\S

A shortcut for [a-zA-Z0-9_]\w

A shortcut for [^a-zA-Z0-9_]\W

Match an r; parenthesis are used to override precedence (see below)(r)

apply option 'r' and omit option 's' while interpreting pattern. Options may be zero or more of the characters
'i' or 's'. 'i' means case-insensitive. '-i' means case-sensitive. 's' alters the meaning of the '.' syntax to match
any single character whatsoever. '-s' alters the meaning of '.' to match any character except '\n'.

(?r-s:pattern)

The regular expression r followed by the regular expression s (a sequence)rs

Either an r or and sr|s

An r but only at the beginning of a line (i.e. when just starting to scan, or right after a newline has been
scanned)

^r

An r but only at the end of a line (i.e. just before a newline)r$

Note

POSIX character classes are not currently supported, due to performance issues when creating them in wide character
mode.

356

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Tip

If you want to build tokens for syntaxes that recognize items like quotes ("'", '"') and backslash (\), here is example
syntax to get you started. The lesson here really is to remember that both c++, as well as regular expressions require
escaping with \ for some constructs, which can cascade.

quote1 = "'"; // match single "'"
quote2 = "\\\""; // match single '"'
literal_quote1 = "\\'"; // match backslash followed by single "'"
literal_quote2 = "\\\\\\\""; // match backslash followed by single '"'
literal_backslash = "\\\\\\\\"; // match two backslashs

Regular Expression Precedence

• rs has highest precedence

• r* has next highest (+, ?, {n,m} have the same precedence as *)

• r|s has the lowest precedence

Macros

Regular expressions can be given a name and referred to in rules using the syntax {NAME} where NAME is the name you have given
to the macro. A macro name can be at most 30 characters long and must start with a _ or a letter. Subsequent characters can be _,
-, a letter or a decimal digit.

Reference

Lexer Concepts

Spirit.Lex components fall into a couple of generalized concepts. The Lexer is the most fundamental concept. All Spirit.Lex components
are models of the Lexer concept. PrimitiveLexer, UnaryLexer, and NaryLexer are all refinements of the Lexer concept.

The following sections provide details on these concepts.

Lexer

Description

The Lexer is the most fundamental concept. A Lexer has a member function, collect, that accepts a token definition container
Def, and a the name of the lexer state the token definitions of the lexer component need to be added to (a string). It doesn't return
anything (return type is void). Each Lexer can represent a specific pattern or algorithm, or it can be a more complex lexer component
formed as a composition of other Lexer's. Additionally, a Lexer exposes a member add_actions, that accepts the token definition
container Def, while returning nothing (again, the returned type is void).

Notation

l A Lexer.

L A Lexer type.

Def A token definition conatiner type.

State A type used to represent lexer state names.

357

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/community/generic_programming.html#concept
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Valid Expressions

In the expressions below, the behavior of the lexer component, l, is left unspecified in the base Lexer concept. These are specified
in subsequent, more refined concepts and by the actual models thereof.

For any Lexer the following expressions must be valid:

Return typeSemanticsExpression

voidAdd all token definitions provided by this Lexer instance to the lexer state state
of the token definition container def.

l.collect(def, state)

voidAdd all semantic actions provided by this Lexer instance to the token definition
container def.

l.add_actions(def)

Type Expressions

DescriptionExpression

Metafunction that evaluates to mpl::true_ if a certain type, L is a Lexer, mpl::false_
otherwise (See MPL Boolean Constant).

traits::is_lexer<L>::type

Postcondition

Upon return from l.collect the following post conditions should hold:

• On return, def holds all token definitions defined in the Lexer, l. This includes all Lexer's contained inside l.

Upon return from l.add_actions the following post conditions should hold:

• On return, def holds all semantic actions correctly asociated with the corresponding token definitions as defined in the Lexer, l.
This includes all semantic actiosn defined by the Lexer's contained inside l.

Models

All lexer components in Spirit.Lex are models of the Lexer concept.

PrimitiveLexer

Description

PrimitiveLexer is the most basic building block that the client uses to build more complex lexer components.

Refinement of

Lexer

Type Expressions

DescriptionExpression

Metafunction that evaluates to mpl::true_ if a certain type, L, is a PrimitiveL-
exer, mpl::false_ otherwise (See MPL Boolean Constant).

traits::is_primitive_lexer<L>::type

Models

The following lexer components conform to this model:

358

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/mpl/doc/refmanual/integral-constant.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/mpl/doc/refmanual/integral-constant.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• character literals (i.e. 'x'), char_,

• string literals ("abc"), std::basic_string<>, string

FIXME Add more links to PrimitiveLexer models here.

UnaryLexer

Description

UnaryLexer is a composite lexer component that has a single subject. The UnaryLexer may change the behavior of its subject fol-
lowing the Delegate Design Pattern.

Refinement of

Lexer

Notation

l A UnaryLexer.

L A UnaryLexer type.

Valid Expressions

In addition to the requirements defined in Lexer, for any UnaryLexer the following must be met:

Return typeSemanticsExpression

LexerSubject lexer component.l.subject

Type Expressions

DescriptionExpression

The subject lexer component type.L::subject_type

Metafunction that evaluates to mpl::true_ if a certain type, L is a UnaryLexer,
mpl::false_ otherwise (See MPL Boolean Constant).

traits::is_unary_lexer<L>::type

Invariants

For any UnaryLexer, L, the following invariant always holds:

• traits::is_lexer<L::subject_type>::type evaluates to mpl::true_

Models

The following lexer components conform to this model:

• action lexer component (allowing to attach semantic actions)

FIXME Add more links to models of UnaryLexer concept

359

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/mpl/doc/refmanual/integral-constant.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

NaryLexer

Description

NaryLexer is a composite lexer component that has one or more subjects. The NaryLexer allows its subjects to be treated in the same
way as a single instance of a Lexer following the Composite Design Pattern.

Refinement of

Lexer

Notation

l A NaryLexer.

L A NaryLexer type.

Valid Expressions

In addition to the requirements defined in Lexer, for any NaryLexer the following must be met:

Return typeSemanticsExpression

A Boost.Fusion Sequence of Lexer types.The tuple of elements.l.elements

Type Expressions

DescriptionExpression

Elements tuple type.l.elements_type

Metafunction that evaluates to mpl::true_ if a certain type, L is a NaryLexer,
mpl::false_ otherwise (See MPL Boolean Constant).

traits::is_nary_lexer<L>::type

Invariants

For each element, E, in any NaryLexer, L, the following invariant always holds:

• traits::is_lexer<E>::type evaluates to mpl::true_

Models

The following lexer components conform to this model:

• lexer sequence component

FIXME Add more links to models of NaryLexer concept

Basics

Examples

All sections in the reference present some real world examples. The examples use a common test harness to keep the example code
as minimal and direct to the point as possible. The test harness is presented below.

Some includes:

360

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/fusion/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/mpl/doc/refmanual/integral-constant.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/spirit/include/lex.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <iostream>
#include <string>

Our test functions:

This one tests token definitions.

Models

Predefined models include:

• any literal string, e.g. "Hello, World",

• a pointer/reference to a null-terminated array of characters

• a std::basic_string<Char>

The namespace boost::spirit::traits is open for users to provide their own specializations.

Lexer API

Description

The library provides a couple of free functions to make using the lexer a snap. These functions have three forms. The first form,
tokenize, simplifies the usage of a standalone lexer (without parsing). The second form, tokenize_and_parse, combines a
lexer step with parsing on the token level (without a skipper). The third, tokenize_and_phrase_parse, works on the token level
as well, but additionally employs a skip parser. The latter two versions can take in attributes by reference that will hold the parsed
values on a successful parse.

Header

// forwards to <boost/spirit/home/lex/tokenize_and_parse.hpp>
#include <boost/spirit/include/lex_tokenize_and_parse.hpp>

For variadic attributes:

// forwards to <boost/spirit/home/lex/tokenize_and_parse_attr.hpp>
#include <boost/spirit/include/lex_tokenize_and_parse_attr.hpp>

The variadic attributes version of the API allows one or more attributes to be passed into the API functions. The functions taking
two or more attributes are usable when the parser expression is a Sequence only. In this case each of the attributes passed have to
match the corresponding part of the sequence.

Also, see Include Structure.

361

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Namespace

Name

boost::spirit::lex::tokenize

boost::spirit::lex::tokenize_and_parse

boost::spirit::lex::tokenize_and_phrase_parse

boost::spirit::qi::skip_flag::postskip

boost::spirit::qi::skip_flag::dont_postskip

Synopsis

The tokenize function is one of the main lexer API functions. It simplifies using a lexer to tokenize a given input sequence. It's
main purpose is to use the lexer to tokenize all the input.

Both functions take a pair of iterators spanning the underlying input stream to scan, the lexer object (built from the token definitions),
and an (optional) functor being called for each of the generated tokens. If no function object f is given, the generated tokens will be
discarded.

The functions return true if the scanning of the input succeeded (the given input sequence has been successfully matched by the
given token definitions).

The argument f is expected to be a function (callable) object taking a single argument of the token type and returning a bool, indic-
ating whether the tokenization should be canceled. If it returns false the function tokenize will return false as well.

The initial_state argument forces lexing to start with the given lexer state. If this is omitted lexing starts in the "INITIAL"
state.

template <typename Iterator, typename Lexer>
inline bool
tokenize(
 Iterator& first
, Iterator last
, Lexer const& lex
, typename Lexer::char_type const* initial_state = 0);

template <typename Iterator, typename Lexer, typename F>
inline bool
tokenize(
 Iterator& first
, Iterator last
, Lexer const& lex
, F f
, typename Lexer::char_type const* initial_state = 0);

The tokenize_and_parse function is one of the main lexer API functions. It simplifies using a lexer as the underlying token
source while parsing a given input sequence.

The functions take a pair of iterators spanning the underlying input stream to parse, the lexer object (built from the token definitions)
and a parser object (built from the parser grammar definition). Additionally they may take the attributes for the parser step.

The function returns true if the parsing succeeded (the given input sequence has been successfully matched by the given grammar).

362

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Iterator, typename Lexer, typename ParserExpr>
inline bool
tokenize_and_parse(
 Iterator& first
, Iterator last
, Lexer const& lex
, ParserExpr const& expr)

template <typename Iterator, typename Lexer, typename ParserExpr
, typename Attr1, typename Attr2, ..., typename AttrN>

inline bool
tokenize_and_parse(
 Iterator& first
, Iterator last
, Lexer const& lex
, ParserExpr const& expr
, Attr1 const& attr1, Attr2 const& attr2, ..., AttrN const& attrN);

The functions tokenize_and_phrase_parse take a pair of iterators spanning the underlying input stream to parse, the lexer object
(built from the token definitions) and a parser object (built from the parser grammar definition). The additional skipper parameter
will be used as the skip parser during the parsing process. Additionally they may take the attributes for the parser step.

The function returns true if the parsing succeeded (the given input sequence has been successfully matched by the given grammar).

template <typename Iterator, typename Lexer, typename ParserExpr
, typename Skipper>

inline bool
tokenize_and_phrase_parse(
 Iterator& first
, Iterator last
, Lexer const& lex
, ParserExpr const& expr
, Skipper const& skipper
, BOOST_SCOPED_ENUM(skip_flag) post_skip = skip_flag::postskip);

template <typename Iterator, typename Lexer, typename ParserExpr
, typename Skipper, typename Attr1, typename Attr2, ..., typename AttrN>

inline bool
tokenize_and_phrase_parse(
 Iterator& first
, Iterator last
, Lexer const& lex
, ParserExpr const& expr
, Skipper const& skipper
, Attr1 const& attr1, Attr2 const& attr2, ..., AttrN const& attrN);

template <typename Iterator, typename Lexer, typename ParserExpr
, typename Skipper, typename Attr1, typename Attr2, ..., typename AttrN>

inline bool
tokenize_and_phrase_parse(
 Iterator& first
, Iterator last
, Lexer const& lex
, ParserExpr const& expr
, Skipper const& skipper
, BOOST_SCOPED_ENUM(skip_flag) post_skip
, Attr1 const& attr1, Attr2 const& attr2, ..., AttrN const& attrN);

The maximum number of supported arguments is limited by the preprocessor constant SPIRIT_ARGUMENTS_LIMIT. This constant
defaults to the value defined by the preprocessor constant PHOENIX_LIMIT (which in turn defaults to 10).

363

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

The variadic function with two or more attributes internally combine references to all passed attributes into a fu-
sion::vector and forward this as a combined attribute to the corresponding one attribute function.

The tokenize_and_phrase_parse functions not taking an explicit skip_flag as one of their arguments invoke the passed
skipper after a successful match of the parser expression. This can be inhbited by using the other versions of that function while
passing skip_flag::dont_postskip to the corresponding argument.

Template parameters

DescriptionParameter

ForwardIterator pointing to the underlying input sequence to parse.Iterator

A lexer (token definition) object.Lexer

A function object called for each generated token.F

An expression that can be converted to a Qi parser.ParserExpr

Parser used to skip white spaces.Skipper

One or more attributes.Attr1, Attr2, ..., AttrN

Token definition Primitives

This module includes different primitives allowing you to create token definitions. It includes char_, character literals, string,
and string literals.

Module Headers

// forwards to <boost/spirit/home/lex/primitives.hpp>
#include <boost/spirit/include/lex_primitives.hpp>

Also, see Include Structure.

Tokens Matching Single Characters

Description

The character based token definitions described in this section are:

The char_ creates token definitions matching single characters. The char_ token definition is associated standard encoding
namespace. This is needed when doing basic operations such as forcing lower or upper case and dealing with character ranges.

Header

Module Headers

// forwards to <boost/spirit/home/lex/lexer/char_token_def.hpp>
#include <boost/spirit/include/lex_char_token_def.hpp>

Also, see Include Structure.

364

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.sgi.com/tech/stl/ForwardIterator.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Namespace

Name

boost::spirit::lit // alias: boost::spirit::lex::lit

lex::char_

Model of

PrimitiveLexer

Notation

ch Character-class specific character from standard character set.

Expression Semantics

Semantics of an expression is defined only where it differs from, or is not defined in PrimitiveLexer.

DescriptionExpression

Create a token definition matching the character literal ch.ch

Create a token definition matching the character literal ch.lit(ch)

Create a token definition matching the character ch.lex::char_(ch)

Example

Advanced

In Depth

Parsers in Depth

This section is not for the faint of heart. In here, are distilled the inner workings of Spirit.Qi parsers, using real code from the Spirit
library as examples. On the other hand, here is no reason to fear reading on, though. We tried to explain things step by step while
highlighting the important insights.

The Parser class is the base class for all parsers.

365

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Derived>
struct parser
{

struct parser_id;
typedef Derived derived_type;
typedef qi::domain domain;

// Requirement: p.parse(f, l, context, skip, attr) -> bool
//
// p: a parser
// f, l: first/last iterator pair
// context: enclosing rule context (can be unused_type)
// skip: skipper (can be unused_type)
// attr: attribute (can be unused_type)

// Requirement: p.what(context) -> info
//
// p: a parser
// context: enclosing rule context (can be unused_type)

// Requirement: P::template attribute<Ctx, Iter>::type
//
// P: a parser type
// Ctx: A context type (can be unused_type)
// Iter: An iterator type (can be unused_type)

 Derived const& derived() const
{

return *static_cast<Derived const*>(this);
}

};

The Parser class does not really know how to parse anything but instead relies on the template parameter Derived to do the actual
parsing. This technique is known as the "Curiously Recurring Template Pattern" in template meta-programming circles. This inher-
itance strategy gives us the power of polymorphism without the virtual function overhead. In essence this is a way to implement
compile time polymorphism.

The Derived parsers, PrimitiveParser, UnaryParser, BinaryParser and NaryParser provide the necessary facilities for
parser detection, introspection, transformation and visitation.

Derived parsers must support the following:

bool parse(f, l, context, skip, attr)

f, l first/last iterator pair

context enclosing rule context (can be unused_type)

skip skipper (can be unused_type)

attr attribute (can be unused_type)

The parse is the main parser entry point. skipper can be an unused_type. It's a type used every where in Spirit to signify "don't-
care". There is an overload for skip for unused_type that is simply a no-op. That way, we do not have to write multiple parse
functions for phrase and character level parsing.

Here are the basic rules for parsing:

• The parser returns true if successful, false otherwise.

366

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• If successful, first is incremented N number of times, where N is the number of characters parsed. N can be zero --an empty
(epsilon) match.

• If successful, the parsed attribute is assigned to attr

• If unsuccessful, first is reset to its position before entering the parser function. attr is untouched.

void what(context)

context enclosing rule context (can be unused_type)

The what function should be obvious. It provides some information about “what” the parser is. It is used as a debugging aid, for ex-
ample.

P::template attribute<context>::type

P a parser type

context A context type (can be unused_type)

The attribute metafunction returns the expected attribute type of the parser. In some cases, this is context dependent.

In this section, we will dissect two parser types:

Parsers

PrimitiveParser A parser for primitive data (e.g. integer parsing).

UnaryParser A parser that has single subject (e.g. kleene star).

Primitive Parsers

For our disection study, we will use a Spirit primitive, the int_parser in the boost::spirit::qi namespace.

367

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <
typename T

, unsigned Radix = 10
, unsigned MinDigits = 1
, int MaxDigits = -1>

struct int_parser_impl
: primitive_parser<int_parser_impl<T, Radix, MinDigits, MaxDigits> >

{
// check template parameter 'Radix' for validity

 BOOST_SPIRIT_ASSERT_MSG(
 Radix == 2 || Radix == 8 || Radix == 10 || Radix == 16,
 not_supported_radix, ());

template <typename Context, typename Iterator>
struct attribute
{

typedef T type;
};

template <typename Iterator, typename Context
, typename Skipper, typename Attribute>

bool parse(Iterator& first, Iterator const& last
, Context& /*context*/, Skipper const& skipper
, Attribute& attr) const

{
 qi::skip_over(first, last, skipper);

return extract_int<T, Radix, MinDigits, MaxDigits>
::call(first, last, attr);

}

template <typename Context>
 info what(Context& /*context*/) const

{
return info("integer");

}
};

The int_parser is derived from a PrimitiveParser<Derived>, which in turn derives from parser<Derived>. Therefore, it
supports the following requirements:

• The parse member function

• The what member function

• The nested attribute metafunction

parse is the main entry point. For primitive parsers, our first thing to do is call:

qi::skip(first, last, skipper);

to do a pre-skip. After pre-skipping, the parser proceeds to do its thing. The actual parsing code is placed in extract_int<T,
Radix, MinDigits, MaxDigits>::call(first, last, attr);

This simple no-frills protocol is one of the reasons why Spirit is fast. If you know the internals of Spirit.Classic and perhaps even
wrote some parsers with it, this simple Spirit mechanism is a joy to work with. There are no scanners and all that crap.

The what function just tells us that it is an integer parser. Simple.

The attribute metafunction returns the T template parameter. We associate the int_parser to some placeholders for short_, int_,
long_ and long_long types. But, first, we enable these placeholders in namespace boost::spirit:

368

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <>
struct use_terminal<qi::domain, tag::short_> // enables short_
: mpl::true_ {};

template <>
struct use_terminal<qi::domain, tag::int_> // enables int_
: mpl::true_ {};

template <>
struct use_terminal<qi::domain, tag::long_> // enables long_
: mpl::true_ {};

template <>
struct use_terminal<qi::domain, tag::long_long> // enables long_long
: mpl::true_ {};

Notice that int_parser is placed in the namespace boost::spirit::qi while these enablers are in namespace boost::spirit. The reason
is that these placeholders are shared by other Spirit domains. Spirit.Qi, the parser is one domain. Spirit.Karma, the generator is an-
other domain. Other parser technologies may be developed and placed in yet another domain. Yet, all these can potentially share the
same placeholders for interoperability. The interpretation of these placeholders is domain-specific.

Now that we enabled the placeholders, we have to write generators for them. The make_xxx stuff (in boost::spirit::qi namespace):

template <typename T>
struct make_int
{

typedef int_parser_impl<T> result_type;
 result_type operator()(unused_type, unused_type) const

{
return result_type();

}
};

This one above is our main generator. It's a simple function object with 2 (unused) arguments. These arguments are

1. The actual terminal value obtained by proto. In this case, either a short, int, long_ or long_long. We don't care about this.

2. Modifiers. We also don't care about this. This allows directives such as no_case[p] to pass information to inner parser nodes.
We'll see how that works later.

Now:

369

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Modifiers>
struct make_primitive<tag::short_, Modifiers> : make_int<short> {};

template <typename Modifiers>
struct make_primitive<tag::int_, Modifiers> : make_int<int> {};

template <typename Modifiers>
struct make_primitive<tag::long_, Modifiers> : make_int<long> {};

template <typename Modifiers>
struct make_primitive<tag::long_long, Modifiers>
: make_int<boost::long_long_type> {};

These, specialize qi:make_primitive for specific tags. They all inherit from make_int which does the actual work.

Composite Parsers

Let me present the kleene star (also in namespace spirit::qi):

template <typename Subject>
struct kleene : unary_parser<kleene<Subject> >
{

typedef Subject subject_type;

template <typename Context, typename Iterator>
struct attribute
{

// Build a std::vector from the subject's attribute. Note
// that build_std_vector may return unused_type if the
// subject's attribute is an unused_type.
typedef typename

 traits::build_std_vector<
typename traits::

 attribute_of<Subject, Context, Iterator>::type
>::type

 type;
};

 kleene(Subject const& subject)
: subject(subject) {}

template <typename Iterator, typename Context
, typename Skipper, typename Attribute>

bool parse(Iterator& first, Iterator const& last
, Context& context, Skipper const& skipper
, Attribute& attr) const

{
// create a local value if Attribute is not unused_type
typedef typename traits::container_value<Attribute>::type

 value_type;
 value_type val = value_type();

// Repeat while subject parses ok
 Iterator save = first;

while (subject.parse(save, last, context, skipper, val) &&
 traits::push_back(attr, val)) // push the parsed value into our attribute

{
 first = save;
 traits::clear(val);

370

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

}
return true;

}

template <typename Context>
 info what(Context& context) const

{
return info("kleene", subject.what(context));

}

 Subject subject;
};

Looks similar in form to its primitive cousin, the int_parser. And, again, it has the same basic ingredients required by Derived.

• The nested attribute metafunction

• The parse member function

• The what member function

kleene is a composite parser. It is a parser that composes another parser, its “subject”. It is a UnaryParser and subclasses from it.
Like PrimitiveParser, UnaryParser<Derived> derives from parser<Derived>.

unary_parser<Derived>, has these expression requirements on Derived:

• p.subject -> subject parser (p is a UnaryParser parser.)

• P::subject_type -> subject parser type (P is a UnaryParser type.)

parse is the main parser entry point. Since this is not a primitive parser, we do not need to call qi::skip(first, last, skipper).
The subject, if it is a primitive, will do the pre-skip. If if it is another composite parser, it will eventually call a primitive parser
somewhere down the line which will do the pre-skip. This makes it a lot more efficient than Spirit.Classic. Spirit.Classic puts the
skipping business into the so-called "scanner" which blindly attempts a pre-skip everytime we increment the iterator.

What is the attribute of the kleene? In general, it is a std::vector<T> where T is the attribute of the subject. There is a special
case though. If T is an unused_type, then the attribute of kleene is also unused_type. traits::build_std_vector takes care
of that minor detail.

So, let's parse. First, we need to provide a local attribute of for the subject:

typename traits::attribute_of<Subject, Context>::type val;

traits::attribute_of<Subject, Context> simply calls the subject's struct attribute<Context> nested metafunction.

val starts out default initialized. This val is the one we'll pass to the subject's parse function.

The kleene repeats indefinitely while the subject parser is successful. On each successful parse, we push_back the parsed attribute
to the kleen's attribute, which is expected to be, at the very least, compatible with a std::vector. In other words, although we say
that we want our attribute to be a std::vector, we try to be more lenient than that. The caller of kleene's parse may pass a different
attribute type. For as long as it is also a conforming STL container with push_back, we are ok. Here is the kleene loop:

371

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

while (subject.parse(first, last, context, skipper, val))
{

// push the parsed value into our attribute
 traits::push_back(attr, val);
 traits::clear(val);
}
return true;

Take note that we didn't call attr.push_back(val). Instead, we called a Spirit provided function:

traits::push_back(attr, val);

This is a recurring pattern. The reason why we do it this way is because attr can be unused_type. traits::push_back takes
care of that detail. The overload for unused_type is a no-op. Now, you can imagine why Spirit is fast! The parsers are so simple and
the generated code is as efficient as a hand rolled loop. All these parser compositions and recursive parse invocations are extensively
inlined by a modern C++ compiler. In the end, you get a tight loop when you use the kleene. No more excess baggage. If the attribute
is unused, then there is no code generated for that. That's how Spirit is designed.

The what function simply wraps the output of the subject in a "kleene“... "”".

Ok, now, like the int_parser, we have to hook our parser to the qi engine. Here's how we do it:

First, we enable the prefix star operator. In proto, it's called the "dereference":

template <>
struct use_operator<qi::domain, proto::tag::dereference> // enables *p
: mpl::true_ {};

This is done in namespace boost::spirit like its friend, the use_terminal specialization for our int_parser. Obviously, we
use use_operator to enable the dereference for the qi::domain.

Then, we need to write our generator (in namespace qi):

template <typename Elements, typename Modifiers>
struct make_composite<proto::tag::dereference, Elements, Modifiers>
: make_unary_composite<Elements, kleene>

{};

This essentially says; for all expressions of the form: *p, to build a kleene parser. Elements is a Boost.Fusion sequence. For the
kleene, which is a unary operator, expect only one element in the sequence. That element is the subject of the kleene.

We still don't care about the Modifiers. We'll see how the modifiers is all about when we get to deep directives.

Customization of Spirit's Attribute Handling

Why do we need Attribute Customization Points

Important

Before you read on please be aware that the interfaces described in this section are not finalized and may change in
the future without attempting to be backwards compatible. We document the customization point interfaces anyways
as we think they are important. Understanding customization points helps understanding Spirit. Additionally they
prove to be powerful tools enabling full integration of the user's data structures with Qi's parsers and Karma's gen-
erators.

372

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://spirit.sourceforge.net
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/fusion/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Spirit has been written with extensibility in mind. It provides many different attribute customization points allowing to integrate
custom data types with the process of parsing in Spirit.Qi or output generation with Spirit.Karma. All attribute customization points
are exposed using a similar technique: full or partial template specialization. Spirit generally implements the main template,
providing a default implementation. You as the user have to provide a partial or full specialization of this template for the data types
you want to integrate with the library. In fact, the library uses these customization points itself for instance to handle the magic of
the unused_type attribute type.

Here is an example showing the container_value customization point used by different parsers (such as Kleene, Plus, etc.) to
find the attribute type to be stored in a supplied STL container:

template <typename Container, typename Enable/* = void*/>
struct container_value
: detail::remove_value_const<typename Container::value_type>

{};

This template is instantiated by the library at the appropriate places while using the supplied container type as the template argument.
The embedded type is used as the attribute type while parsing the elements to be store in that container.

The following example shows the predefined specialization for unused_type:

template <>
struct container_value<unused_type>
{

typedef unused_type type;
};

which defines its embedded type to be unused_type as well, this way propagating the 'don't care' attribute status to the embedded
parser.

All attribute customization points follow the same scheme. The last template parameter is always typename Enable = void al-
lowing to apply SFINAE for fine grained control over the template specialization process. But most of the time you can safely forget
about its existence.

The following sections will describe all customization points, together with a description which needs to be specialized for what
purpose.

The Usage of Customization Points

The different customizations points are used by different parts of the library. Part of the customizations points are used by both,
Spirit.Qi and Spirit.Karma, whereas others are specialized to be applied for one of the sub-libraries only. We will explain when a
specific customization point needs to be implemented and, equally important, which customization points need to be implemented
at the same time. Often it is not sufficient to provide a specialization for one single customization point only, in this case you as the
user have to provide all necessary customizations for your data type you want to integrate with the library.

Determine if a Type Should be Treated as a Container (Qi and Karma)

is_container

The template is_container is a template meta-function used as an attribute customization point. It is invoked by the Qi Sequence
(>>) and Karma Sequence (<<) operators in order to determine whether a supplied attribute can potentially be treated as a container.

Header

#include <boost/spirit/home/support/container.hpp>

Also, see Include Structure.

373

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

This header file does not need to be included directly by any user program as it is normally included by other Spirit
header files relying on its content.

Namespace

Name

boost::spirit::traits

Synopsis

template <typename Container, typename Enable>
struct is_container
{

typedef <unspecified> type;
};

Template parameters

DefaultDescriptionParameter

noneThe type, Container which needs to be tested whether it has to be treated as a containerContainer

voidHelper template parameter usable to selectively enable or disable certain specializations of is_con-
tainer utilizing SFINAE (i.e. boost::enable_if or boost::disable_if).

Enable

Notation

C A type to be tested whether it needs to be treated as a container.

T1, T2, ... Arbitrary types

Expression Semantics

SemanticsExpression

Result of the metafunction that evaluates to mpl::true_ if a given type, C, is to be treated as a
container, mpl::false_ otherwise (See MPL Boolean Constant).

is_container<C>::type

Predefined Specializations

Spirit predefines specializations of this customization point for several types. The following table lists those types together with the
conditions for which the corresponding specializations will evaluate to mpl::true_ (see MPL Boolean Constant):

374

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/mpl/doc/refmanual/integral-constant.html
http://spirit.sourceforge.net
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/mpl/doc/refmanual/integral-constant.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ValueTemplate Parameters

Returns mpl::true_ if T has the following embedded types defined: value_type,
iterator, size_type, andreference. Otherwise it will return mpl::false_.

T

Returns is_container<T>::typeboost::optional<T>

Returns mpl::true_ if at least one of the is_container<TN>::type returns
mpl::true_ (where TN is T1, T2, ...). Otherwise it will return mpl::false_.

boost::variant<T1, T2, ...>

Returns mpl::false_.unused_type

When to implement

The customization point is_container needs to be implemented for a specific type whenever this type is to be used as an attribute
in place of a STL container. It is applicable for parsers (Spirit.Qi) and generators (Spirit.Karma). As a rule of thumb: it has to be
implemented whenever a certain type is to be passed as an attribute to a parser or a generator normally exposing a STL container, C
and if the type does not expose the interface of a STL container (i.e. is_container<C>::type would normally return mpl::false_).
These components have an attribute propagation rule in the form:

a: A --> Op(a): vector<A>

where Op(a) stands for any meaningful operation on the component a.

Related Attribute Customization Points

If this customization point is implemented, the following other customization points might need to be implemented as well.

When to implementName

Needs to be implemented whenever is_container is implemented.container_value

Qi: List, Kleene, Plus, Repeat.push_back_container

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.container_iterator

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.begin_container

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.end_container

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.deref_iterator

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.next_iterator

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.compare_iterators

Example

For examples of how to use the customization point is_container please see here: embedded_container_example, use_as_container,
and counter_example.

375

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Transform an Attribute to a Different Type (Qi and Karma)

transform_attribute

The template transform_attribute is a type used as an attribute customization point. It is invoked by Qi rule and attr_cast,
and Karma rule and attr_cast. It is used to automatically transform the user provided attribute to the attribute type expected by
the right hand side component (for rule) or the embedded component (for attr_cast).

Module Headers

#include <boost/spirit/home/support/attributes.hpp>

Also, see Include Structure.

Note

This header file does not need to be included directly by any user program as it is normally included by other Spirit
header files relying on its content.

Namespace

Name

boost::spirit::traits

Synopsis

template <typename Exposed, typename Transformed, typename Enable>
struct transform_attribute
{

typedef <unspecified> type;
static type pre(Exposed& val);
static void post(Exposed& val, type attr); // Qi only

};

Template parameters

DefaultDescriptionParameter

noneThe attribute type supplied to the component which needs to be transformed.Exposed

noneThe attribute type expected by the component to be provided as the result of the transformation.Transformed

voidHelper template parameter usable to selectively enable or disable certain specializations of
transform_attribute utilizing SFINAE (i.e. boost::enable_if or boost::disable_if).

Enable

Notation

Notation

Exposed The type, Exposed is the type of the attribute as passed in by the user.

Transformed The type, Transformed is the type of the attribute as passed along to the right hand side of the rule (embedded
component of attr_cast).

376

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

exposed An instance of type Exposed.

transformed An instance of type Transformed.

Expression Semantics

SemanticsExpression

Evaluates to the type to be used as the result of the transformation (to be passed to the
right hand side of the rule or to the embedded component of the attr_cast. Most of
the time this is equal to Transformed, but in other cases this might evaluate to Trans-
formed& instead avoiding superfluous object creation.

transform_attribute<Exposed,

Transformed>::type

Do pre-transformation before invoking the right hand side component for rule (or the
embedded component for attr_cast). This takes the attribute supplied as by the user
(of type Exposed) and returns the attribute to be passed down the component hierarchy
(of the type as exposed by the metafunction type). This function will be called in Qi and
for Karma.

type transform_attrib↵
ute<Exposed, Trans↵
formed>::pre(exposed)

Do post-transformation after the invocation of the right hand side component for rule
(or the embedded component for attr_cast). This takes the original attribute as supplied
by the user and the attribute as returned from the right hand side (embedded) component
and is expected to propagate the result back into the supplied attribute instance. This
function will be called in Qi only.

void transform_attrib↵
ute<Exposed, Trans↵
formed>::post(ex↵
posed, transformed)

Predefined Specializations

SemanticsTemplate parameters

type evaluates to Transformed, pre() returns a new instance of Transformed constructed
from the argument of type Exposed, post() assigns transformed to exposed.

Exposed, Transformed

type evaluates to Transformed, pre() returns a new instance of Transformed constructed
from the argument of type Exposed, post() assigns transformed to exposed.

Exposed&, Transformed

type evaluates to Attrib&, pre() returns it's argument, post() does nothing.Attrib&, Attrib

(usind in Karma only) type evaluates to Transformed, pre() returns it's argument,
post() is not implemented.

Exposed const, Transformed

(usind in Karma only) type evaluates to Attrib const&, pre() returns it's argument,
post() is not implemented.

Attrib const&, Attrib

(usind in Karma only) type evaluates to Attrib const&, pre() returns it's argument,
post() is not implemented.

Attrib const, Attrib

type evaluates to unused_type, pre() and post() do nothing.unused_type, Attrib

type evaluates to unused_type, pre() and post() do nothing.Attrib, unused_type

When to implement

The customization point transform_attribute needs to be implemented for a specific pair of types whenever the attribute type
supplied to a rule or attr_cast cannot automatically transformed to the attribute type expected by the right hand side of the rule
(embedded component of the attr_cast) because the default implementation as shown above is not applicable. Examples for this
could be that the type Transformed is not constructible from the type Exposed.

377

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

TBD

Store a Parsed Attribute Value (Qi)

After parsing input and generting an attribute value this value needs to assigned to the attribute instance provided by the user. The
customization points assign_to_attribute_from_iterators and assign_to_attribute_from_value are utilized to adapt
this assignment to the concrete type to be assigned. This section describes both.

Store an Attribute after a Parser Produced a Pair of Iterators (Qi)

assign_to_attribute_from_iterators

The template assign_to_attribute_from_iterators is a type used as an attribute customization point. It is invoked by the
those Qi parsers not producing any attribute value but returning a pair of iterators pointing to the matched input sequence. It is used
to either store the iterator pair into the attribute instance provided by the user or to convert the iterator pair into an attribute as provided
by the user.

Module Headers

#include <boost/spirit/home/qi/detail/assign_to.hpp>

Also, see Include Structure.

Note

This header file does not need to be included directly by any user program as it is normally included by other Spirit
header files relying on its content.

Namespace

Name

boost::spirit::traits

Synopsis

template <typename Attrib, typename Iterator, typename Enable>
struct assign_to_attribute_from_iterators
{

static void call(Iterator const& first, Iterator const& last, Attrib& attr);
};

Template parameters

DefaultDescriptionParameter

noneThe type, Attrib is the type of the attribute as passed in by the user.Attrib

noneThe type, Iterator is the type of the iterators as produced by the parser.Iterator

voidHelper template parameter usable to selectively enable or disable certain specializations of as-
sign_to_attribute_from_value utilizing SFINAE (i.e. boost::enable_if or boost::dis-
able_if).

Enable

378

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Notation

Notation

Attrib A type to be used as the target to store the attribute value in.

attr A attribute instance of type Attrib.

Iterator The iterator type used by the parser. This type usually corresponds to the iterators as passed in
by the user.

begin, end Iterator instances of type Iterator pointing to the begin and the end of the matched input se-
quence.

Expression Semantics

SemanticsExpression

Use the iterators begin and end to initialize the attribute
attr.

assign_to_attribute_from_iterators<Attrib, Iter↵
ator>::call(b, e, attr)

Predefined Specializations

SemanticsTemplate Parameters

Execute an assignment attr = Attrib(begin, end).Attrib, Iterator

Do nothing.unused_type, T

When to implement

The customization point assign_to_attribute_from_iterators needs to be implemented for a specific type whenever the
default implementation as shown above is not applicable. Examples for this could be that the type Attrib is not constructible from
the pair of iterators.

Example

TBD

Store an Attribute Value after a Parser Produced a Value (Qi)

assign_to_attribute_from_value

The template assign_to_attribute_from_value is a type used as an attribute customization point. It is invoked by the all
primitive Qi parsers in order to store a parsed attribute value into the attribute instance provided by the user.

Module Headers

#include <boost/spirit/home/qi/detail/assign_to.hpp>

Also, see Include Structure.

379

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

This header file does not need to be included directly by any user program as it is normally included by other Spirit
header files relying on its content.

Namespace

Name

boost::spirit::traits

Synopsis

template <typename Attrib, typename T, typename Enable>
struct assign_to_attribute_from_value
{

static void call(T const& val, Attrib& attr);
};

Template parameters

DefaultDescriptionParameter

noneThe type, Attrib is the type of the attribute as passed in by the user.Attrib

noneThe type, T is the type of the attribute instance as produced by the parser.T

voidHelper template parameter usable to selectively enable or disable certain specializations of as-
sign_to_attribute_from_value utilizing SFINAE (i.e. boost::enable_if or boost::dis-
able_if).

Enable

Notation

Notation

Attrib A type to be used as the target to store the attribute value in.

attr A attribute instance of type Attrib.

T A type as produced by the parser. The parser temporarily stores its parsed values using this type.

t A attribute instance of type T.

Expression Semantics

SemanticsExpression

Copy (assign) the value, t to the attribute attr.
assign_to_attribute_from_value<Attrib, T>::call(t, attr)

380

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Predefined Specializations

SemanticsTemplate Parameters

Assign the argument t to attr.Attrib, T

Do nothing.unused_type, T

When to implement

The customization point assign_to_attribute_from_value needs to be implemented for a specific type whenever the default
implementation as shown above is not applicable. Examples for this could be that the type Attrib is not copy constructible.

Example

TBD

Store Parsed Attribute Values into a Container (Qi)

In order to customize Spirit to accept a given data type as a container for elements parsed by any of the repetitive parsers (Kleene,
Plus, List, and Repeat) two attribute customization points have to be specialized: container_value and push_back_container.
This section describes both.

Determine the Type to be Stored in a Container (Qi)

container_value

The template container_value is a template meta function used as an attribute customization point. It is invoked by the Qi repet-
itive parsers (Kleene, Plus, List, and Repeat) to determine the type to store in a container.

Module Headers

#include <boost/spirit/home/support/container.hpp>

Also, see Include Structure.

Note

This header file does not need to be included directly by any user program as it is normally included by other Spirit
header files relying on its content.

Namespace

Name

boost::spirit::traits

381

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

template <typename Container, typename Enable>
struct container_value
{

typedef <unspecified> type;
};

Template parameters

DefaultDescriptionParameter

noneThe type Container is the type for which the type f the elements has to be deduced.Container

voidHelper template parameter usable to selectively enable or disable certain specializations of contain-
er_value utilizing SFINAE (i.e. boost::enable_if or boost::disable_if).

Enable

Notation

C A type to be tested whether it needs to be treated as a container.

T1, T2, ... Arbitrary types

Expression Semantics

SemanticsExpression

Metafunction that evaluates to the type to be stored in a given container type, C.container_value<C>::type

Predefined Specializations

Spirit predefines specializations of this customization point for several types. The following table lists those types together with the
types exposed and the corresponding semantics:

ValueTemplate Parameters

The non-const value_type of the given container type, C.C

Returns container_value<C>::typeboost::optional<C>

Returns container_value<TN>::value for the first TN (out of T1, T2, ...) for which
is_container<TN>::type evaluates to mpl::true_. Otherwise it will return un-
used_type.

boost::variant<T1, T2, ...>

Returns unused_type.unused_type

When to implement

The customization point is_container needs to be implemented for a specific type whenever this type is to be used as an attribute
in place of a STL container. It is applicable for parsers (Spirit.Qi) only. As a rule of thumb: it has to be implemented whenever a
certain type is to be passed as an attribute to a parser normally exposing a STL container and if the type does not expose the interface
of a STL container (i.e. no embedded typedef for value_type). These components have an attribute propagation rule in the form:

a: A --> Op(a): vector<A>

where Op(a) stands for any meaningful operation on the component a.

382

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Related Attribute Customization Points

If this customization point is implemented, the following other customization points might need to be implemented as well.

When to implementName

Qi: List, Kleene, Plus, Repeat.push_back_container

Qi: List, Kleene, Plus, Repeat.clear_value

Example

Here is an example showing the default implementation of the container_value customization point provided by the library:

template <typename Container, typename Enable/* = void*/>
struct container_value
: detail::remove_value_const<typename Container::value_type>

{};

This template is instantiated by the library at the appropriate places while using the supplied container type as the template argument.
The embedded type is used as the attribute type while parsing the elements to be store in that container.

The following example shows the predefined specialization for unused_type:

template <>
struct container_value<unused_type>
{

typedef unused_type type;
};

which defines its embedded type to be unused_type as well, this way propagating the 'don't care' attribute status to the embedded
parser.

More examples: TBD.

Store a Parsed Attribute Value into a Container (Qi)

push_back_container

The template push_back_container is a type used as an attribute customization point. It is invoked by the Qi repetitive parsers
(Kleene, Plus, List, and Repeat) to store a parsed attribute value into a container.

Module Headers

#include <boost/spirit/home/support/container.hpp>

Also, see Include Structure.

Note

This header file does not need to be included directly by any user program as it is normally included by other Spirit
header files relying on its content.

383

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Namespace

Name

boost::spirit::traits

Synopsis

template <typename Container, typename Attrib, typename Enable>
struct push_back_container
{

static bool call(Container& c, Attrib const& val);
};

Template parameters

DefaultDescriptionParameter

noneThe type, Container needs to be tested whether it has to be treated as a containerContainer

noneThe type, Attrib is the one returned from the customization point container_value and represents
the attribute value to be stored in the container of type Container.

Attrib

voidHelper template parameter usable to selectively enable or disable certain specializations of
push_back_container utilizing SFINAE (i.e. boost::enable_if or boost::disable_if).

Enable

Notation

C A type to be used as a container to store attribute values in.

c A container instance of type C.
[Attrib
A type to be used as a container to store attribute values in.

attr A attribute instance of type Attrib.

T1, T2, ... Arbitrary types

Expression Semantics

SemanticsExpression

Static function that is invoked whenever an attribute value, attr needs to be stored
into the container instance c. This function should return true on success and false
otherwise. Returning false causes the corresponding parser to fail.

push_back_container<C, At↵
trib>::call(c, attr)

Predefined Specializations

Spirit predefines specializations of this customization point for several types. The following table lists those types together with the
types exposed and the corresponding semantics:

384

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ValueTemplate Parameters

Store the provided attribute instance attr into the given container c using the function call
c.insert(c.end(), attr).

C, Attrib

If the provided instance of boost::optional<> is not initialized, invoke the appropriate
initialization and afterwards apply the customization point push_back_container<C,
Attrib>, treating the instance held by the optional (of type C) as the container to store the
attribute in.

boost::optional<C>, Attrib

If the instance of the variant currently holds a value with a type, TN, for which is_contain-
er<TN>::type evaluates to mpl::true_, this customization point specialization will apply
push_back_container<TN, Attrib>, treating the instance held by the variant (of type
TN) as the container to store the attribute in. Otherwise it will raise an assertion.

boost::variant<T1, T2,

...>, Attrib

Do nothing.unused_type

When to Implement

The customization point push_back_container needs to be implemented for a specific type whenever this type is to be used as
an attribute in place of a STL container. It is applicable for parsers (Spirit.Qi) only. As a rule of thumb: it has to be implemented
whenever a certain type is to be passed as an attribute to a parser normally exposing a STL container and if the type does not expose
the interface of a STL container (i.e. no function being equivalent to c.insert(c.end(), attr). These components have an at-
tribute propagation rule in the form:

a: A --> Op(a): vector<A>

where Op(a) stands for any meaningful operation on the component a.

Related Attribute Customization Points

If this customization point is implemented, the following other customization points might need to be implemented as well.

When to implementName

Qi: List, Kleene, Plus, Repeat.container_value

Qi: List, Kleene, Plus, Repeat.clear_value

Example

Here is an example showing the default implementation of the container_value customization point provided by the library:

template <typename Container, typename T, typename Enable/* = void*/>
struct push_back_container
{

static bool call(Container& c, T const& val)
{

 c.insert(c.end(), val);
return true;

}
};

This template is instantiated by the library at the appropriate places while using the supplied container and element types as the
template arguments. The member function call() will be called whenever an element has to be added to the supplied container

The following example shows the predefined specialization for unused_type:

385

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Container>
bool push_back(Container&, unused_type)
{

return true;
}

which defines an empty member function call().

More examples: TBD

Re-Initialize an Attribute Value before Parsing (Qi)

clear_value

The template clear_value is a type used as an attribute customization point. It is invoked by the Qi repetitive parsers (Kleene,
Plus, List, and Repeat) in order to re-initialize the attribute instance passed to the embedded parser after it has been stored in the
provided container. This re-initialized attribute instance is reused during the next iteration of the repetitive parser.

Module Headers

#include <boost/spirit/home/support/attributes.hpp>

Also, see Include Structure.

Note

This header file does not need to be included directly by any user program as it is normally included by other Spirit
header files relying on its content.

Namespace

Name

boost::spirit::traits

Synopsis

template <typename Attrib, typename Enable>
struct clear_value
{

static void call(Attrib& val);
};

Template parameters

DefaultDescriptionParameter

noneThe type, Attrib of the attribute to be re-initialized.Attrib

voidHelper template parameter usable to selectively enable or disable certain specializations of
clear_value utilizing SFINAE (i.e. boost::enable_if or boost::disable_if).

Enable

386

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Notation

Notation

Attrib A type to be used as a container to store attribute values in.

attr A attribute instance of type Attrib.

T1, T2, ... Arbitrary types

Expression Semantics

SemanticsExpression

Re-initialize the instance referred to by attr in the most efficient way.
clear_value<Attrib>::call(Attrib& at↵
tr)

Predefined Specializations

Spirit predefines specializations of this customization point for several types. The following table lists those types together with the
types exposed and the corresponding semantics:

ValueTemplate Parameters

Re-initialize using assignment of default constructed value.Attrib

Call the member function attr.clear() for the passed attribute instance.Any type T for which is_container<>::type is
mpl::true_

Clear the optional instance and leave it uninitialized.boost::optional<Attrib>

Invoke the clear_value customization point for the currently held value.boost::variant<T1, T2, ...>

Invoke the clear_value customization point for all elements of the
tuple.

fusion::tuple<T1, T2, ...>

Do nothing.unused_type

When to Implement

The customization point clear_value needs to be implemented for a specific type whenever this type is to be used as an attribute
to be stored into a STL container and if the type cannot be re-initialized using one of the specializations listed above. Examples for
this might be types not being default constructible or container types not exposing a member function clear().

Example

TBD

Extract an Attribute Value to Generate Output (Karma)

extract_from

Before generating output for a value this value needs to extracted from the attribute instance provided by the user. The customization
point extract_from is utilized to adapt this extraction for any data type possibly used to store the values to output.

387

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Module Headers

#include <boost/spirit/home/karma/detail/extract_from.hpp>

Also, see Include Structure.

Note

This header file does not need to be included directly by any user program as it is normally included by other Spirit
header files relying on its content.

Namespace

Name

boost::spirit::traits

Synopsis

template <typename Attrib, typename Enable>
struct extract_from_attribute
{

typedef <unspecified> type;

template <typename Context>
static type call(Attrib const& attr, Context& context);

};

Template parameters

DefaultDescriptionParameter

noneThe type, Attrib of the attribute to be used to generate output from.Attrib

voidHelper template parameter usable to selectively enable or disable certain specializations of
clear_value utilizing SFINAE (i.e. boost::enable_if or boost::disable_if).

Enable

This is the type of the current generator execution context.Context

Notation

Notation

Attrib A type to be used to generate output from.

attr A attribute instance of type Attrib.

Expression Semantics

SemanticsExpression

Extract the value to generate output from and return it to the caller.
extract_from_attribute<Attrib>::call(at↵
tr, ctx)

388

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Predefined Specializations

Spirit predefines specializations of this customization point for several types. The following table lists those types together with the
types exposed and the corresponding semantics:

ValueTemplate Parameters

The exposed typedef type is defined to Attrib const&. The function call() returns
the argument by reference without change.

Attrib

The exposed typedef type is defined to Attrib const&. The function call() returns
the value held by the optional<> argument by reference without change.

boost::optional<Attrib>

The exposed typedef type is defined to Attrib const&. The function call() returns
the value held by the reference_wrapper<> argument by reference without change.

boost::reference_wrapper<At-

trib>

The exposed typedef type is defined to unused_type. The function call() returns an
instance of unused_type.

unused_type

When to implement

The customization point extract_from_attribute needs to be implemented for a specific type whenever the default implement-
ation as shown above is not applicable. Examples for this could be that the type to be extracted is different from Attrib and is not
copy constructible.

Example

TBD

Extract Attribute Values to Generate Output from a Container (Karma)

Determine the Type of the Iterator of a Container (Karma)

container_iterator

The template container_iterator is a template meta-function used as an attribute customization point. It is invoked by the
Karma repetitive generators (such as List (%), Kleene (unary *), Plus (unary +), and Repeat) in order to determine the type of the
iterator to use to iterate over the items to be exposed as the elements of a container.

Module Headers

#include <boost/spirit/home/support/container.hpp>

Also, see Include Structure.

Note

This header file does not need to be included directly by any user program as it is normally included by other Spirit
header files relying on its content.

Namespace

Name

boost::spirit::traits

389

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

template <typename Container, typename Enable>
struct container_iterator
{

typedef <unspecified> type;
};

Template parameters

DefaultDescriptionParameter

noneThe type, Container for which the iterator type has to be returnedContainer

voidHelper template parameter usable to selectively enable or disable certain specializations of contain-
er_iterator utilizing SFINAE (i.e. boost::enable_if or boost::disable_if).

Enable

Notation

C A container type the iterator type needs to be evaluated for.

Expression Semantics

SemanticsExpression

Result of the metafunction that evaluates the type to be used as the iterator for accessing
all elements of a container, C.

container_iterator<C>::type

The returned type conceptually needs to be equivalent to a standard forward iterator. But it does not have to expose the standardized
interface. If this customization point is implemented for a certain container type, all related customization points need to be imple-
mented as well (see Related Attribute Customization Points below). This encapsulates the specific iterator interface required for a
given type. The minimal requirements for a type to be exposed as an iterator in this context are:

• it needs to be comparable for equality (see compare_iterators),

• it needs to be incrementable (see next_iterator),

• it needs to be dereferencible (see deref_iterator).

Predefined Specializations

Spirit predefines specializations of this customization point for several types. The following table lists those types together with the
types returned by the embedded typedef type:

ValueTemplate Parameters

Returns C::iterator.C

Returns C::const_iterator.C const

Returns unused_type const*.unused_type

When to implement

The customization point container_iterator needs to be implemented for a specific type whenever this type is to be used as an
attribute in place of a STL container. It is applicable for generators (Spirit.Karma) only. As a rule of thumb: it has to be implemented

390

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

whenever a certain type is to be passed as an attribute to a generator normally exposing a STL container, C and if the type does not
expose the interface of a STL container (i.e. is_container<C>::type would normally return mpl::false_).

Related Attribute Customization Points

If this customization point is implemented, the following other customization points might need to be implemented as well.

When to implementName

Needs to be implemented whenever a type is to be used as a container attribute in Karma.is_container

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.container_iterator

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.begin_container

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.end_container

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.deref_iterator

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.next_iterator

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.compare_iterators

Example

Here are the header files needed to make the example code below compile:

#include <boost/spirit/include/karma.hpp>
#include <iostream>
#include <vector>

The example (for the full source code please see here: customize_embedded_container.cpp) uses the data structure

namespace client
{

struct embedded_container
{

// expose the iterator of the embedded vector as our iterator
typedef std::vector<int>::const_iterator iterator;

// expose the type of the held data elements as our type
typedef std::vector<int>::value_type type;

// this is the vector holding the actual elements we need to generate
// output from

 std::vector<int> data;
};

}

as a direct container attribute to the List (%) generator. In order to make this data structure compatible we need to specialize a couple
of attribute customization points: is_container, container_iterator, begin_container, and end_container. As you can
see the specializations simply expose the embedded std::vector<int> as the container to use. We don't need to specialize the
customization points related to iterators (deref_iterator, next_iterator, and compare_iterators) as we expose a standard
iterator and the default implementation of these customizations handles standard iterators out of the box.

391

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/karma/customize_embedded_container.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// All specializations of attribute customization points have to be placed into
// the namespace boost::spirit::traits.
//
// Note that all templates below are specialized using the 'const' type.
// This is necessary as all attributes in Karma are 'const'.
namespace boost { namespace spirit { namespace traits
{

// The specialization of the template 'is_container<>' will tell the
// library to treat the type 'client::embedded_container' as a
// container holding the items to generate output from.
template <>
struct is_container<client::embedded_container const>
: mpl::true_

{};

// The specialization of the template 'container_iterator<>' will be
// invoked by the library to evaluate the iterator type to be used
// for iterating the data elements in the container. We simply return
// the type of the iterator exposed by the embedded 'std::vector<int>'.
template <>
struct container_iterator<client::embedded_container const>
{

typedef client::embedded_container::iterator type;
};

// The specialization of the templates 'begin_container<>' and
// 'end_container<>' below will be used by the library to get the iterators
// pointing to the begin and the end of the data to generate output from.
// These specializations simply return the 'begin' and 'end' iterators as
// exposed by the embedded 'std::vector<int>'.
//
// The passed argument refers to the attribute instance passed to the list
// generator.
template <>
struct begin_container<client::embedded_container const>
{

static client::embedded_container::iterator
 call(client::embedded_container const& d)

{
return d.data.begin();

}
};

template <>
struct end_container<client::embedded_container const>
{

static client::embedded_container::iterator
 call(client::embedded_container const& d)

{
return d.data.end();

}
};

}}}

The last code snippet shows an example using an instance of the data structure client::embedded_container to generate output
from a List (%) generator:

392

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

client::embedded_container d1; // create some test data
d1.data.push_back(1);
d1.data.push_back(2);
d1.data.push_back(3);

// use the instance of an 'client::embedded_container' instead of a
// STL vector
std::cout << karma::format(karma::int_ % ", ", d1) << std::endl; // prints: '1, 2, 3'

As you can see, the specializations for the customization points as defined above enable the seemless integration of the custom data
structure without having to modify the output format or the generator itself.

For other examples of how to use the customization point container_iterator please see here: use_as_container and
counter_example.

Get the Iterator pointing to the Begin of a Container Attribute

begin_container

The template begin_container is a type used as an attribute customization point. It is invoked by the Karma repetitive generators
(such as List (%), Kleene (unary *), Plus (unary +), and Repeat) in order to get an iterator pointing to the first element of the container
holding the attributes to generate output from.

Module Headers

#include <boost/spirit/home/support/container.hpp>

Also, see Include Structure.

Note

This header file does not need to be included directly by any user program as it is normally included by other Spirit
header files relying on its content.

Namespace

Name

boost::spirit::traits

393

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

template <typename Container, typename Enable>
struct begin_container
{

static typename container_iterator<Container>::type
 call(Container& c);
};

Template parameters

DefaultDescriptionParameter

noneThe type, Container for which the iterator pointing to the first element has to be returnedContainer

voidHelper template parameter usable to selectively enable or disable certain specializations of begin_con-
tainer utilizing SFINAE (i.e. boost::enable_if or boost::disable_if).

Enable

Notation

C A container type the begin iterator needs to be returned for.

c An instance of a container, C.

Expression Semantics

SemanticsExpression

Return the iterator usable to dereference the first element of the given container, c. The
type of the returned iterator is expected to be the same as the type returned by the custom-
ization point container_iterator.

begin_container<C>::call(c)

The returned instance conceptually needs to be equivalent to a standard forward iterator. But it does not have to expose the standardized
interface. If this customization point is implemented for a certain container type, all related customization points need to be imple-
mented as well (see Related Attribute Customization Points below). This encapsulates the specific iterator interface required for a
given type. The minimal requirements for a type to be exposed as an iterator in this context are:

• it needs to be comparable for equality (see compare_iterators),

• it needs to be incrementable (see next_iterator),

• it needs to be dereferencible (see deref_iterator).

Predefined Specializations

Spirit predefines specializations of this customization point for several types. The following table lists those types together with the
types returned by the embedded typedef type:

ValueTemplate Parameters

Returns c.begin().C

Returns c.begin().C const

Returns &unused.unused_type

394

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

When to implement

The customization point begin_container needs to be implemented for a specific type whenever this type is to be used as an at-
tribute in place of a STL container. It is applicable for generators (Spirit.Karma) only. As a rule of thumb: it has to be implemented
whenever a certain type is to be passed as an attribute to a generator normally exposing a STL container, C and if the type does not
expose the interface of a STL container (i.e. is_container<C>::type would normally return mpl::false_).

Related Attribute Customization Points

If this customization point is implemented, the following other customization points might need to be implemented as well.

When to implementName

Needs to be implemented whenever a type is to be used as a container attribute in Karma.is_container

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.container_iterator

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.begin_container

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.end_container

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.deref_iterator

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.next_iterator

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.compare_iterators

Example

For examples of how to use the customization point begin_container please see here: embedded_container_example,
use_as_container, and counter_example.

Get the Iterator pointing to the End of a Container Attribute

end_container

The template end_container is a type used as an attribute customization point. It is invoked by the Karma repetitive generators
(such as List (%), Kleene (unary *), Plus (unary +), and Repeat) in order to get an iterator pointing to the end of the container holding
the attributes to generate output from.

Module Headers

#include <boost/spirit/home/support/container.hpp>

Also, see Include Structure.

Note

This header file does not need to be included directly by any user program as it is normally included by other Spirit
header files relying on its content.

Namespace

Name

boost::spirit::traits

395

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

template <typename Container, typename Enable>
struct end_container
{

static typename container_iterator<Container>::type
 call(Container& c);
};

Template parameters

DefaultDescriptionParameter

noneThe type, Container for which the iterator pointing to the first element has to be returnedContainer

voidHelper template parameter usable to selectively enable or disable certain specializations of
end_container utilizing SFINAE (i.e. boost::enable_if or boost::disable_if).

Enable

Notation

C A container type the end iterator needs to be returned for.

c An instance of a container, C.

Expression Semantics

SemanticsExpression

Return the iterator usable to compare a different iterator with in order to detect whether the
other iterator reached the end of the given container, c. The type of the returned iterator is
expected to be the same as the type returned by the customization point container_iter-
ator.

end_container<C>::call(c)

Predefined Specializations

Spirit predefines specializations of this customization point for several types. The following table lists those types together with the
types returned by the embedded typedef type:

ValueTemplate Parameters

Returns c.end().C

Returns c.end().C const

Returns &unused.unused_type

When to implement

The customization point end_container needs to be implemented for a specific type whenever this type is to be used as an attribute
in place of a STL container. It is applicable for generators (Spirit.Karma) only. As a rule of thumb: it has to be implemented
whenever a certain type is to be passed as an attribute to a generator normally exposing a STL container, C and if the type does not
expose the interface of a STL container (i.e. is_container<C>::type would normally return mpl::false_).

Related Attribute Customization Points

If this customization point is implemented, the following other customization points might need to be implemented as well.

396

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

When to implementName

Needs to be implemented whenever a type is to be used as a container attribute in Karma.is_container

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.container_iterator

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.begin_container

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.end_container

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.deref_iterator

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.next_iterator

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.compare_iterators

Example

For examples of how to use the customization point end_container please see here: embedded_container_example, use_as_con-
tainer, and counter_example.

Increment the Iterator pointing into a Container Attribute

next_iterator

The template next_iterator is a type used as an attribute customization point. It is invoked by the Karma repetitive generators
(such as List (%), Kleene (unary *), Plus (unary +), and Repeat) in order to get an iterator pointing to the next element of a container
holding the attributes to generate output from.

Module Headers

#include <boost/spirit/home/support/container.hpp>

Also, see Include Structure.

Note

This header file does not need to be included directly by any user program as it is normally included by other Spirit
header files relying on its content.

Namespace

Name

boost::spirit::traits

397

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

template <typename Iterator, typename Enable>
struct next_iterator
{

static void call(Iterator& it);
};

Template parameters

DefaultDescriptionParameter

noneThe type, Iterator of the iterator to increment. This is the same as the type returned by the custom-
ization point container_iterator.

Iterator

voidHelper template parameter usable to selectively enable or disable certain specializations of
next_iterator utilizing SFINAE (i.e. boost::enable_if or boost::disable_if).

Enable

Notation

Iterator An iterator type.

it An instance of an iterator, Iterator.

C A container type a iterator type, Iterator belongs to.

Expression Semantics

SemanticsExpression

Increment the iterator pointing so that it is pointing to the next element.next_iterator<Iterator>::call(it)

Predefined Specializations

Spirit predefines specializations of this customization point for several types. The following table lists those types together with the
types returned by the embedded typedef type:

ValueTemplate Parameters

Executes ++it.Iterator

Does nothing.unused_type const*

When to implement

The customization point next_iterator needs to be implemented for a specific iterator type whenever the container this iterator
belongs to is to be used as an attribute in place of a STL container. It is applicable for generators (Spirit.Karma) only. As a rule of
thumb: it has to be implemented whenever a certain iterator type belongs to a container which is to be passed as an attribute to a
generator normally exposing a STL container, C and if the container type does not expose the interface of a STL container (i.e.
is_container<C>::type would normally return mpl::false_).

Related Attribute Customization Points

If this customization point is implemented, the following other customization points might need to be implemented as well.

398

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

When to implementName

Needs to be implemented whenever a type is to be used as a container attribute in Karma.is_container

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.container_iterator

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.begin_container

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.end_container

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.deref_iterator

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.next_iterator

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.compare_iterators

Example

Here are the header files needed to make the example code below compile:

#include <boost/spirit/include/karma.hpp>
#include <iostream>
#include <string>
#include <vector>

The example (for the full source code please see here: customize_use_as_container.cpp) uses the data structure

399

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/karma/customize_use_as_container.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace client
{

struct use_as_container
{

// Expose a pair holding a pointer to the use_as_container and to the
// current element as our iterator.
// We intentionally leave out having it a 'operator==()' to demonstrate
// the use of the 'compare_iterators' customization point.
struct iterator
{

 iterator(use_as_container const* container, int const* current)
: container_(container), current_(current)

{}

 use_as_container const* container_;
int const* current_;

};

// expose 'int' as the type of each generated element
typedef int type;

 use_as_container(int value1, int value2, int value3)
: value1_(value1), value2_(value2), value3_(value3)

{}

int value1_;
 std::string dummy1_; // insert some unrelated data

int value2_;
 std::string dummy2_; // insert some more unrelated data

int value3_;
};

}

as a direct attribute to the List (%) generator. This type does not expose any of the interfaces of an STL container. It does not even
expose the usual semantics of a container. The purpose of this artifical example is to demonstrate how the customization points can
be used to expose independent data elements as a single container. The example shows how to enable its use as an attribute to Karma's
repetitive generators.

In order to make this data structure compatible we need to specialize a couple of attribute customization points: is_container,
container_iterator, begin_container, and end_container. In addition, we specialize all of the iterator related customization
points as well: deref_iterator, next_iterator, and compare_iterators.

400

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// All specializations of attribute customization points have to be placed into
// the namespace boost::spirit::traits.
//
// Note that all templates below are specialized using the 'const' type.
// This is necessary as all attributes in Karma are 'const'.
namespace boost { namespace spirit { namespace traits
{

// The specialization of the template 'is_container<>' will tell the
// library to treat the type 'client::use_as_container' as a
// container holding the items to generate output from.
template <>
struct is_container<client::use_as_container const>
: mpl::true_

{};

// The specialization of the template 'container_iterator<>' will be
// invoked by the library to evaluate the iterator type to be used
// for iterating the data elements in the container. We simply return
// the type of the iterator exposed by the embedded 'std::vector<int>'.
template <>
struct container_iterator<client::use_as_container const>
{

typedef client::use_as_container::iterator type;
};

// The specialization of the templates 'begin_container<>' and
// 'end_container<>' below will be used by the library to get the iterators
// pointing to the begin and the end of the data to generate output from.
//
// The passed argument refers to the attribute instance passed to the list
// generator.
template <>
struct begin_container<client::use_as_container const>
{

static client::use_as_container::iterator
 call(client::use_as_container const& c)

{
return client::use_as_container::iterator(&c, &c.value1_);

}
};

template <>
struct end_container<client::use_as_container const>
{

static client::use_as_container::iterator

401

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 call(client::use_as_container const& c)
{

return client::use_as_container::iterator(&c, (int const*)0);
}

};
}}}

// All specializations of attribute customization points have to be placed into
// the namespace boost::spirit::traits.
namespace boost { namespace spirit { namespace traits
{

// The specialization of the template 'deref_iterator<>' will be used to
// dereference the iterator associated with our counter data structure.
template <>
struct deref_iterator<client::use_as_container::iterator>
{

typedef client::use_as_container::type type;

static type call(client::use_as_container::iterator const& it)
{

return *it.current_;
}

};

template <>
struct next_iterator<client::use_as_container::iterator>
{

static void call(client::use_as_container::iterator& it)
{

if (it.current_ == &it.container_->value1_)
 it.current_ = &it.container_->value2_;

else if (it.current_ == &it.container_->value2_)
 it.current_ = &it.container_->value3_;

else
 it.current_ = 0;

}
};

template <>
struct compare_iterators<client::use_as_container::iterator>
{

static bool call(client::use_as_container::iterator const& it1
, client::use_as_container::iterator const& it2)

{
return it1.current_ == it2.current_ &&

 it1.container_ == it2.container_;
}

};
}}}

The last code snippet shows an example using an instance of the data structure client::use_as_container to generate output
from a List (%) generator:

client::use_as_container d2 (1, 2, 3);
// use the instance of a 'client::use_as_container' instead of a STL vector
std::cout << karma::format(karma::int_ % ", ", d2) << std::endl; // prints: '1, 2, 3'

As you can see, the specializations for the customization points as defined above enable the seemless integration of the custom data
structure without having to modify the output format or the generator itself.

402

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Dereference the Iterator pointing into a Container Attribute

deref_iterator

The template deref_iterator is a type used as an attribute customization point. It is invoked by the Karma repetitive generators
(such as List (%), Kleene (unary *), Plus (unary +), and Repeat) in order to dereference an iterator pointing to an element of a con-
tainer holding the attributes to generate output from.

Module Headers

#include <boost/spirit/home/support/container.hpp>

Also, see Include Structure.

Note

This header file does not need to be included directly by any user program as it is normally included by other Spirit
header files relying on its content.

Namespace

Name

boost::spirit::traits

Synopsis

template <typename Iterator, typename Enable>
struct deref_iterator
{

typedef <unspecified> type;
static type call(Iterator& it);

};

Template parameters

DefaultDescriptionParameter

noneThe type, Iterator of the iterator to dereference. This is the same as the type returned by the custom-
ization point container_iterator.

Iterator

voidHelper template parameter usable to selectively enable or disable certain specializations of
deref_iterator utilizing SFINAE (i.e. boost::enable_if or boost::disable_if).

Enable

Notation

Iterator An iterator type.

it An instance of an iterator, Iterator.

C A container type a iterator type, Iterator belongs to.

403

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Expression Semantics

SemanticsExpression

Metafunction result evaluating to the type returned by dereferencing the iterator.deref_iterator<Iterator>::type

Return the element in the container the itertor is referring to. The type of the re-
turned value is the same as returned by the metafunction result type.

deref_iterator<Iterator>::call(it)

Predefined Specializations

Spirit predefines specializations of this customization point for several types. The following table lists those types together with the
types returned by the embedded typedef type:

ValueTemplate Parameters

The metafunction result type evaluates to boost::detail::iterator_traits<Iterator>::ref-
erence and the function call() returns *it.

Iterator

The metafunction result type evaluates to unused_type and the function call() returns unused.unused_type const*

When to implement

The customization point deref_iterator needs to be implemented for a specific iterator type whenever the container this iterator
belongs to is to be used as an attribute in place of a STL container. It is applicable for generators (Spirit.Karma) only. As a rule of
thumb: it has to be implemented whenever a certain iterator type belongs to a container which is to be passed as an attribute to a
generator normally exposing a STL container, C and if the container type does not expose the interface of a STL container (i.e.
is_container<C>::type would normally return mpl::false_).

Related Attribute Customization Points

If this customization point is implemented, the following other customization points might need to be implemented as well.

When to implementName

Needs to be implemented whenever a type is to be used as a container attribute in Karma.is_container

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.container_iterator

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.begin_container

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.end_container

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.deref_iterator

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.next_iterator

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.compare_iterators

Example

Here are the header files needed to make the example code below compile:

404

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/spirit/include/karma.hpp>
#include <iostream>
#include <vector>

The example (for the full source code please see here: customize_counter.cpp) uses the data structure

namespace client
{

struct counter
{

// expose the current value of the counter as our iterator
typedef int iterator;

// expose 'int' as the type of each generated element
typedef int type;

 counter(int max_count)
: counter_(0), max_count_(max_count)

{}

int counter_;
int max_count_;

};
}

as a direct attribute to the List (%) generator. This type does not expose any of the interfaces of an STL container. It does not even
expose the usual semantics of a container. The presented customization points build a counter instance which is incrememnted each
time it is accessed. The examples shows how to enable its use as an attribute to Karma's repetitive generators.

In order to make this data structure compatible we need to specialize a couple of attribute customization points: is_container,
container_iterator, begin_container, and end_container. In addition, we specialize one of the iterator related customiz-
ation points as well: deref_iterator.

405

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/karma/customize_counter.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// All specializations of attribute customization points have to be placed into
// the namespace boost::spirit::traits.
//
// Note that all templates below are specialized using the 'const' type.
// This is necessary as all attributes in Karma are 'const'.
namespace boost { namespace spirit { namespace traits
{

// The specialization of the template 'is_container<>' will tell the
// library to treat the type 'client::counter' as a container providing
// the items to generate output from.
template <>
struct is_container<client::counter const>
: mpl::true_

{};

// The specialization of the template 'container_iterator<>' will be
// invoked by the library to evaluate the iterator type to be used
// for iterating the data elements in the container.
template <>
struct container_iterator<client::counter const>
{

typedef client::counter::iterator type;
};

// The specialization of the templates 'begin_container<>' and
// 'end_container<>' below will be used by the library to get the iterators
// pointing to the begin and the end of the data to generate output from.
// These specializations respectively return the initial and maximum
// counter values.
//
// The passed argument refers to the attribute instance passed to the list
// generator.
template <>
struct begin_container<client::counter const>
{

static client::counter::iterator
 call(client::counter const& c)

{
return c.counter_;

}
};

template <>
struct end_container<client::counter const>
{

static client::counter::iterator

406

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 call(client::counter const& c)
{

return c.max_count_;
}

};
}}}

// All specializations of attribute customization points have to be placed into
// the namespace boost::spirit::traits.
namespace boost { namespace spirit { namespace traits
{

// The specialization of the template 'deref_iterator<>' will be used to
// dereference the iterator associated with our counter data structure.
// Since we expose the current value as the iterator we just return the
// current iterator as the return value.
template <>
struct deref_iterator<client::counter::iterator>
{

typedef client::counter::type type;

static type call(client::counter::iterator const& it)
{

return it;
}

};
}}}

The last code snippet shows an example using an instance of the data structure client::counter to generate output from a List
(%) generator:

// use the instance of a 'client::counter' instead of a STL vector
client::counter count(4);
std::cout << karma::format(karma::int_ % ", ", count) << std::endl; // prints: '0, 1, 2, 3'

As you can see, the specializations for the customization points as defined above enable the seemless integration of the custom data
structure without having to modify the output format or the generator itself.

For other examples of how to use the customization point deref_iterator please see here: use_as_container.

Compare two Iterator pointing into a Container Attribute for Equality

compare_iterators

The template compare_iterators is a type used as an attribute customization point. It is invoked by the Karma repetitive gener-
ators (such as List (%), Kleene (unary *), Plus (unary +), and Repeat) in order to compare the current iterator (returned either from
begin_container or from next_iterator) with the end iterator (returned from end_container) in order to find the end of
the element sequence to gerenate output for.

Module Headers

#include <boost/spirit/home/support/container.hpp>

Also, see Include Structure.

407

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

This header file does not need to be included directly by any user program as it is normally included by other Spirit
header files relying on its content.

Namespace

Name

boost::spirit::traits

Synopsis

template <typename Iterator, typename Enable>
struct compare_iterators
{

static bool call(Iterator const& it1, Iterator const& it2);
};

Template parameters

DefaultDescriptionParameter

noneThe type, Iterator of the iterator to dereference. This is the same as the type returned by the custom-
ization point container_iterator.

Iterator

voidHelper template parameter usable to selectively enable or disable certain specializations of com-
pare_iterators utilizing SFINAE (i.e. boost::enable_if or boost::disable_if).

Enable

Notation

Iterator An iterator type.

it1, it2 Instance of iterators of type, Iterator.

C A container type a iterator type, Iterator belongs to.

Expression Semantics

SemanticsExpression

Returns whether the iterators it1 it2 are to be treated as beeing
equal.

compare_iterators<Iterator>::call(it1, it2)

Predefined Specializations

Spirit predefines specializations of this customization point for several types. The following table lists those types together with the
types returned by the embedded typedef type:

ValueTemplate Parameters

The function call() returns it1 == it2.Iterator

The function call() always returns false.unused_type const*

408

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

When to implement

The customization point compare_iterators needs to be implemented for a specific iterator type whenever the container this
iterator belongs to is to be used as an attribute in place of a STL container. It is applicable for generators (Spirit.Karma) only. As a
rule of thumb: it has to be implemented whenever a certain iterator type belongs to a container which is to be passed as an attribute
to a generator normally exposing a STL container, C and if the container type does not expose the interface of a STL container (i.e.
is_container<C>::type would normally return mpl::false_).

Related Attribute Customization Points

If this customization point is implemented, the following other customization points might need to be implemented as well.

When to implementName

Needs to be implemented whenever a type is to be used as a container attribute in Karma.is_container

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.container_iterator

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.begin_container

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.end_container

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.deref_iterator

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.next_iterator

Karma: List (%), Kleene (unary *), Plus (unary +), Repeat.compare_iterators

Example

For an example of how to use the customization point compare_iterators please see here: use_as_container.

Create Components from Attributes

Spirit supports the creation of a default parser or a default generator from a given attribute type. It implements a minimal set of pre-
defined mappings from different attribute types to parsers and generators (for a description of the predefined mappings see Additional
Attribute Requirements for Parsers and Additional Attribute Requirements for Generators). The customization points described in
this section (create_parser and create_generator) can be specialized to define additional mappings for custom data types.

Define a Custom Attribute Mapping for a Parser

create_parser

The template create_parser is a type used as an customization point. It is invoked by the Qi create_parser API function in
order to create a custom mapping of the given data type to a parser expression. This parser expression will be returned from cre-
ate_parser whenever the given data type is encountered.

Module Headers

// forwards to <boost/spirit/home/qi/auto.hpp>
#include <boost/spirit/include/qi_auto.hpp>

Also, see Include Structure.

409

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Namespace

Name

boost::spirit::traits

Synopsis

template <typename T, typename Enable>
struct create_parser
{

typedef <unspecified> type;
static type const& call();

};

Template parameters

DefaultDescriptionParameter

noneThe type, T for which a custom mapping to a parser should be established.T

voidHelper template parameter usable to selectively enable or disable certain specializations of create_gen-
erator utilizing SFINAE (i.e. boost::enable_if or boost::disable_if).

Enable

Notation

T An arbitrary type.

Expression Semantics

SemanticsExpression

Defines the type of the parser expression returned from call.create_parser<T>::type

Returns a parser expression (usually this is a proto::expression) to be used as the default
parser for the given type, T.

create_parser<T>::call()

Predefined Specializations

Spirit predefines specializations of this customization point for several types. All predefined mappings are listed here: Additional
Attribute Requirements for Parsers.

Note

It is possible to overload the predefined mappings for the listed types by providing your own specialization of the
create_parser cutomization point for the type to modify.

When to implement

The customization point create_parser needs to be implemented for a specific type whenever this type should be usable with the
API function create_parser (which includes using the qi::auto_ parser and the special API functions based on the automatic
creation of the matching parser type).

Example

For an example of how to use the customization point create_parser please see here: Example for Using the qi::auto_ Parser.

410

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Define a Custom Attribute Mapping for a Generator

create_generator

The template create_generator is a type used as an customization point. It is invoked by the Karma create_generator API
function in order to create a custom mapping of the given data type to a generator expression. This generator expression will be returned
from create_generator whenever the given data type is encountered.

Module Headers

// forwards to <boost/spirit/home/karma/auto.hpp>
#include <boost/spirit/include/karma_auto.hpp>

Also, see Include Structure.

Namespace

Name

boost::spirit::traits

Synopsis

template <typename T, typename Enable>
struct create_generator
{

typedef <unspecified> type;
static type const& call();

};

Template parameters

DefaultDescriptionParameter

noneThe type, T for which a custom mapping to a generator should be established.T

voidHelper template parameter usable to selectively enable or disable certain specializations of create_gen-
erator utilizing SFINAE (i.e. boost::enable_if or boost::disable_if).

Enable

Notation

T An arbitrary type.

Expression Semantics

SemanticsExpression

Defines the type of the generator expression returned from call.create_generator<T>::type

Returns a generator expression (usually this is a proto::expression) to be used as the default
generator for the given type, T.

create_generator<T>::call()

Predefined Specializations

Spirit predefines specializations of this customization point for several types. All predefined mappings are listed here: Additional
Attribute Requirements for Generators.

411

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

It is possible to overload the predefined mappings for the listed types by providing your own specialization of the
create_generator cutomization point for the type to modify.

When to implement

The customization point create_generator needs to be implemented for a specific type whenever this type should be usable with
the API function create_generator (which includes using the karma::auto_ generator and the special API functions based on
the automatic creation of the matching generator type).

Example

For an example of how to use the customization point create_generator please see here: Example for Using the karma::auto_
Generator.

Supporting libraries

The multi pass iterator
Backtracking in Spirit.Qi requires the use of the following types of iterator: forward, bidirectional, or random access. Because of
backtracking, input iterators cannot be used. Therefore, the standard library classes std::istreambuf_iterator and std::is-
tream_iterator, that fall under the category of input iterators, cannot be used. Another input iterator that is of interest is one that
wraps a lexer, such as LEX.

Note

In general, Spirit.Qi generates recursive descent parser which require backtracking parsers by design. For this
reason we need to provide at least forward iterators to any of Spirit.Qi's API functions. This is not an absolute re-
quirement though. In the future, we shall see more deterministic parsers that require no more than 1 character (token)
of lookahead. Such parsers allow us to use input iterators such as the std::istream_iterator as is.

Backtracking can be implemented only if we are allowed to save an iterator position, i.e. making a copy of the current iterator. Un-
fortunately, with an input iterator, there is no way to do so, and thus input iterators will not work with backtracking in Spirit.Qi. One
solution to this problem is to simply load all the data to be parsed into a container, such as a vector or deque, and then pass the begin
and end of the container to Spirit.Qi. This method can be too memory intensive for certain applications, which is why the multi_pass
iterator was created.

Using the multi_pass

The multi_pass iterator will convert any input iterator into a forward iterator suitable for use with Spirit.Qi. multi_pass will
buffer data when needed and will discard the buffer when its contents is not needed anymore. This happens either if only one copy
of the iterator exists or if no backtracking can occur.

A grammar must be designed with care if the multi_pass iterator is used. Any rule that may need to backtrack, such as one that
contains an alternative, will cause data to be buffered. The rules that are optimal to use are repetition constructs (as kleene and plus).

Sequences of the form a >> b will buffer data as well. This is different from the behaviour of Spirit.Classic but for a good reason.
Sequences need to reset the current iterator to its initial state if one of the components of a seqeunce fails to match. To compensate
for this behaviour we added functionality to the expect parsers (i.e. constructs like a > b). Expectation points introduce determin-
istic points into the grammar ensuring no backtracking can occur if they match. For this reason we clear the buffers of any multi_pass
iterator on each expectation point, ensuring minimal buffer content even for large grammars.

412

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Important

If you use an error handler in conjunction with the expect parser while utilizing a multi_pass iterator and you
intend to use the error handler to force a retry or a fail (see the description of error handlers - FIXME: insert
link), then you need to instantiate the error handler using retry or fail, for instance:

rule r<iterator_type> r;
on_error<retry>(r, std::cout << phoenix::val("Error!"));

If you fail to do so the resulting code will trigger an assert statement at runtime.

Any rule that repeats, such as kleene_star (*a) or positive such as (+a), will only buffer the data for the current repetition.

In typical grammars, ambiguity and therefore lookahead is often localized. In fact, many well designed languages are fully determ-
inistic and require no lookahead at all. Peeking at the first character from the input will immediately determine the alternative branch
to take. Yet, even with highly ambiguous grammars, alternatives are often of the form *(a | b | c | d). The input iterator moves
on and is never stuck at the beginning. Let's look at a Pascal snippet for example:

program =
 programHeading >> block >> '.'

;

block =
*(labelDeclarationPart
| constantDefinitionPart
| typeDefinitionPart
| variableDeclarationPart
| procedureAndFunctionDeclarationPart
)

>> statementPart
;

Notice the alternatives inside the Kleene star in the rule block . The rule gobbles the input in a linear manner and throws away the
past history with each iteration. As this is fully deterministic LL(1) grammar, each failed alternative only has to peek 1 character
(token). The alternative that consumes more than 1 character (token) is definitely a winner. After which, the Kleene star moves on
to the next.

Now, after the lecture on the features to be careful with when using multi_pass, you may think that multi_pass is way too re-
strictive to use. That's not the case. If your grammar is deterministic, you can make use of the flush_multi_pass pseudo parser
in your grammar to ensure that data is not buffered when unnecessary (flush_multi_pass is available from the Spirit.Qi parser
Repository).

Here we present a minimal example showing a minimal use case. The multi_pass iterator is highly configurable, but the default
policies have been chosen so that its easily usable with input iterators such as std::istreambuf_iterator. For the complete
source code of this example please refer to multi_pass.cpp.

413

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../repository/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../example/support/multi_pass.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

int main()
{

namespace spirit = boost::spirit;
using spirit::ascii::space;
using spirit::ascii::char_;
using spirit::qi::double_;
using spirit::qi::eol;

 std::ifstream in("multi_pass.txt"); // we get our input from this file
if (!in.is_open()) {

 std::cout << "Could not open input file: 'multi_pass.txt'" << std::endl;
return -1;

}

typedef std::istreambuf_iterator<char> base_iterator_type;
 spirit::multi_pass<base_iterator_type> first =
 spirit::make_default_multi_pass(base_iterator_type(in));

 std::vector<double> v;
bool result = spirit::qi::phrase_parse(first
, spirit::make_default_multi_pass(base_iterator_type())
, double_ >> *(',' >> double_) // recognize list of doubles
, space | '#' >> *(char_ - eol) >> eol // comment skipper
, v); // data read from file

if (!result) {
 std::cout << "Failed parsing input file!" << std::endl;

return -2;
}

 std::cout << "Successfully parsed input file!" << std::endl;
return 0;

}

Using the flush_multi_pass parser

The Spirit Repository contains the flush_multi_pass parser component. This is usable in conjunction with the multi_pass
iterator to minimize the buffering. It allows to insert explicit synchronization points into your grammar where it is safe to clear any
stored input as it is ensured that no backtracking can occur at this point anymore.

When the flush_multi_pass parser is used with multi_pass, it will call multi_pass::clear_queue(). This will cause any
buffered data to be erased. This also will invalidate all other copies of multi_pass and they should not be used. If they are, an
boost::illegal_backtracking exception will be thrown.

The multi_pass Policies

The multi_pass iterator is a templated class configurable using policies. The description of multi_pass above is how it was
originally implemented (before it used policies), and is the default configuration now. But, multi_pass is capable of much more.
Because of the open-ended nature of policies, you can write your own policy to make multi_pass behave in a way that we never
before imagined.

The multi_pass class has two template parameters:

The multi_pass template parameters

Input The type multi_pass uses to acquire it's input. This is typically an input iterator, or functor.

Policies The combined policies to use to create an instance of a multi_pass iterator. This combined policy type is described
below

414

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../repository/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

It is possible to implement all of the required functionality of the combinded policy in a single class. But it has shown to be more
convenient to split this into four different groups of functions, i.e. four separate, but well coordinated policies. For this reason the
multi_pass library implements a template iterator_policies::default_policy allowing to combine several different
policies, each implementing one of the functionality groups:

Table 12. Policies needed for default_policy template

DescriptionTemplate Parameter

This policy determines how multi_pass deals with it's shared components.OwnershipPolicy

This policy determines how checking for invalid iterators is done.CheckingPolicy

A class that defines how multi_pass acquires its input. The InputPolicy is parameterized by the
Input template parameter to the multi_pass.

InputPolicy

The buffering scheme used by multi_pass is determined and managed by the StoragePolicy.StoragePolicy

The multi_pass library contains several predefined policy implementations for each of the policy types as described above. First
we will describe those predefined types. Afterwards we will give some guidelines how you can write your own policy implementations.

Predefined policies

All predefined multi_pass policies are defined in the namespace boost::spirit::iterator_policies.

415

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 13. Predefined policy classes

DescriptionClass name

InputPolicy classes

This policy directs multi_pass to read from an input iterator of type Input.input_iterator

This policy directs multi_pass to read from an input stream of type Input (usually a std::ba-
sic_istream).

istream

This policy obtains it's input by calling yylex(), which would typically be provided by a scanner
generated by Flex. If you use this policy your code must link against a Flex generated scanner.

lex_input

This input policy obtains it's data by calling a functor of type Input. The functor must meet certain
requirements. It must have a typedef called result_type which should be the type returned from

functor_input

operator(). Also, since an input policy needs a way to determine when the end of input has been
reached, the functor must contain a static variable named eof which is comparable to a variable of
result_type.

This is essentially the same as the functor_input policy except that the (user supplied) funtion
object exposes separate unique and shared sub classes, allowing to integrate the functors unique

split_functor_input

data members with the multi_pass data items held by each instance and its shared data members
will be integrated with the multi_pass members shared by all copies.

OwnershipPolicy classes

This class uses a reference counting scheme. The multi_pass will delete it's shared components
when the count reaches zero.

ref_counted

When this policy is used, the first multi_pass created will be the one that deletes the shared data.
Each copy will not take ownership of the shared data. This works well for Spirit, since no dynamic

first_owner

allocation of iterators is done. All copies are made on the stack, so the original iterator has the
longest lifespan.

CheckingPolicy classes

This policy does no checking at all.no_check

This policy keeps around a buffer id, or a buffer age. Every time clear_queue() is called on a
multi_pass iterator, it is possible that all other iterators become invalid. When clear_queue()

buf_id_check

is called, buf_id_check increments the buffer id. When an iterator is dereferenced, this policy
checks that the buffer id of the iterator matches the shared buffer id. This policy is most effective
when used together with the split_std_deque StoragePolicy. It should not be used with the
fixed_size_queue StoragePolicy, because it will not detect iterator dereferences that are out of
range.

This policy has not been implemented yet. When it is, it will keep track of all iterators and make
sure that they are all valid. This will be mostly useful for debugging purposes as it will incur signi-
ficant overhead.

full_check

StoragePolicy classes

Despite its name this policy keeps all buffered data in a std::vector. All data is stored as long
as there is more than one iterator. Once the iterator count goes down to one, and the queue is no

split_std_deque

longer needed, it is cleared, freeing up memory. The queue can also be forcibly cleared by calling
multi_pass::clear_queue().

416

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://flex.sourceforge.net/
http://flex.sourceforge.net/
http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionClass name

This policy keeps a circular buffer that is size N+1 and stores N elements. fixed_size_queue is
a template with a std::size_t parameter that specified the queue size. It is your responsibility
to ensure that N is big enough for your parser. Whenever the foremost iterator is incremented, the
last character of the buffer is automatically erased. Currently there is no way to tell if an iterator is
trailing too far behind and has become invalid. No dynamic allocation is done by this policy during
normal iterator operation, only on initial construction. The memory usage of this StoragePolicy
is set at N+1 bytes, unlike split_std_deque, which is unbounded.

fixed_size_queue<N>

Combinations: How to specify your own custom multi_pass

The beauty of policy based designs is that you can mix and match policies to create your own custom iterator by selecting the policies
you want. Here's an example of how to specify a custom multi_pass that wraps an std::istream_iterator<char>, and is
slightly more efficient than the default multi_pass (as generated by the make_default_multi_pass() API function) because
it uses the iterator_policies::first_owner OwnershipPolicy and the iterator_policies::no_check CheckingPolicy:

typedef multi_pass<
 std::istream_iterator<char>
, iterator_policies::default_policy<

 iterator_policies::first_owner
, iterator_policies::no_check
, iterator_policies::input_iterator
, iterator_policies::split_std_deque

>
> first_owner_multi_pass_type;

The default template parameters for iterator_policies::default_policy are:

• iterator_policies::ref_counted OwnershipPolicy

• iterator_policies::no_check CheckingPolicy, if BOOST_SPIRIT_DEBUG is defined: iterator_policies::buf_id_check
CheckingPolicy

• iterator_policies::input_iterator InputPolicy, and

• iterator_policies::split_std_deque StoragePolicy.

So if you use multi_pass<std::istream_iterator<char> > you will get those pre-defined behaviors while wrapping an
std::istream_iterator<char>.

Dealing with constant look ahead

There is one other pre-defined class called look_ahead. The class look_ahead is another predefine multi_pass iterator type. It
has two template parameters: Input, the type of the input iterator to wrap, and a std::size_t N, which specifies the size of the
buffer to the fixed_size_queue policy. While the default multi_pass configuration is designed for safey, look_ahead is designed
for speed. look_ahead is derived from a multi_pass with the following policies: input_iterator InputPolicy, first_owner
OwnershipPolicy, no_check CheckingPolicy, and fixed_size_queue<N> StoragePolicy.

This iterator is defined by including the files:

// forwards to <boost/spirit/home/support/look_ahead.hpp>
#include <boost/spirit/include/support_look_ahead.hpp>

Also, see Include Structure.

417

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Reading from standard input streams

Yet another predefined iterator for wrapping standard input streams (usually a std::basic_istream<>) is called basic_is-
tream_iterator<Char, Traits>. This class is usable as a drop in replacement for std::istream_iterator<Char, Traits>.
Its only difference is that it is a forward iterator (instead of the std::istream_iterator, which is an input iterator). basic_is-
tream_iterator is derived from a multi_pass with the following policies: istream InputPolicy, ref_counted OwnershipPolicy,
no_check CheckingPolicy, and split_std_deque StoragePolicy.

There exists an additional predefined typedef:

typedef basic_istream_iterator<char, std::char_traits<char> > istream_iterator;

This iterator is defined by including the files:

// forwards to <boost/spirit/home/support/istream_iterator.hpp>
#include <boost/spirit/include/support_istream_iterator.hpp>

Also, see Include Structure.

How to write a functor for use with the functor_input InputPolicy

If you want to use the functor_input InputPolicy, you can write your own function object that will supply the input to multi_pass.
The function object must satisfy several requirements. It must have a typedef result_type which specifies the return type of its
operator(). This is standard practice in the STL. Also, it must supply a static variable called eof which is compared against to
know whether the input has reached the end. Last but not least the function object must be default constructible. Here is an example:

418

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// define the function object
class iterate_a2m
{
public:

typedef char result_type;

 iterate_a2m() : c('A') {}
 iterate_a2m(char c) : c_(c) {}

 result_type operator()() const
{

if (c_ == 'M')
return eof;

return c_++;
}

static result_type eof;

private:
char c_;

};

iterate_a2m::result_type iterate_a2m::eof = iterate_a2m::result_type('\0');

// create two iterators using the define function object, one of which is
// an end iterator
typedef multi_pass<my_functor
, iterator_policies::functor_input
, iterator_policies::first_owner
, iterator_policies::no_check
, iterator_policies::split_std_deque>

functor_multi_pass_type;

functor_multi_pass_type first = functor_multi_pass_t(my_functor());
functor_multi_pass_type last;

// use the iterators: this will print "ABCDEFGHIJKL"
while (first != last) {
 std::cout << *first;

++first;
}

How to write policies for use with multi_pass

All policies to be used with the default_policy template need to have two embedded classes: unique and shared. The unique
class needs to implement all required functions for a particular policy type. In addition it may hold all member data items being
unique for a particular instance of a multi_pass (hence the name). The shared class does not expose any member functions (except
sometimes a constructor), but it may hold all member data items to be shared between all copies of a particular multi_pass.

InputPolicy

An InputPolicy must have the following interface:

419

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct input_policy
{

// Input is the same type used as the first template parameter
// while instantiating the multi_pass
template <typename Input>
struct unique
{

// these typedef's will be exposed as the multi_pass iterator
// properties
typedef __unspecified_type__ value_type;
typedef __unspecified_type__ difference_type;
typedef __unspecified_type__ distance_type;
typedef __unspecified_type__ pointer;
typedef __unspecified_type__ reference;

 unique() {}
explicit unique(Input) {}

// destroy is called whenever the last copy of a multi_pass is
// destructed (ownership_policy::release() returned true)
//
// mp: is a reference to the whole multi_pass instance
template <typename MultiPass>
static void destroy(MultiPass& mp);

// swap is called by multi_pass::swap()
void swap(unique&);

// get_input is called whenever the next input character/token
// should be fetched.
//
// mp: is a reference to the whole multi_pass instance
//
// This method is expected to return a refernce to the next
// character/token
template <typename ValueType, typename MultiPass>
static ValueType const& get_input(MultiPass& mp)

// advance_input is called whenever the underlying input stream
// should be advanced so that the next call to get_input will be
// able to return the next input character/token
//
// mp: is a reference to the whole multi_pass instance
template <typename MultiPass>
static void advance_input(MultiPass& mp);

// input_at_eof is called to test whether this instance is a
// end of input iterator.
//
// mp: is a reference to the whole multi_pass instance
//
// This method is expected to return true if the end of input is
// reached. It is often used in the implementation of the function
// storage_policy::is_eof.
template <typename MultiPass>
static bool input_at_eof(MultiPass const& mp);

// input_is_valid is called to verify if the parameter t represents
// a valid input character/token
//
// mp: is a reference to the whole multi_pass instance
// t: is the character/token to test for validity
//

420

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// This method is expected to return true if the parameter t
// represents a valid character/token.
template <typename MultiPass>
static bool input_is_valid(MultiPass const& mp, value_type const& t);

};

// Input is the same type used as the first template parameter passed
// while instantiating the multi_pass
template <typename Input>
struct shared
{

explicit shared(Input) {}
};

};

It is possible to derive the struct unique from the type boost::spirit::detail::default_input_policy. This type implements
a minimal sufficient interface for some of the required functions, simplifying the task of writing a new input policy.

This class may implement a function destroy() being called during destruction of the last copy of a multi_pass. This function
should be used to free any of the shared data items the policy might have allocated during construction of its shared part. Because
of the way multi_pass is implemented any allocated data members in shared should not be deep copied in a copy constructor of
shared.

OwnershipPolicy

The OwnershipPolicy must have the following interface:

421

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct ownership_policy
{

struct unique
{

// destroy is called whenever the last copy of a multi_pass is
// destructed (ownership_policy::release() returned true)
//
// mp: is a reference to the whole multi_pass instance
template <typename MultiPass>
static void destroy(MultiPass& mp);

// swap is called by multi_pass::swap()
void swap(unique&);

// clone is called whenever a multi_pass is copied
//
// mp: is a reference to the whole multi_pass instance
template <typename MultiPass>
static void clone(MultiPass& mp);

// release is called whenever a multi_pass is destroyed
//
// mp: is a reference to the whole multi_pass instance
//
// The method is expected to return true if the destructed
// instance is the last copy of a particular multi_pass.
template <typename MultiPass>
static bool release(MultiPass& mp);

// is_unique is called to test whether this instance is the only
// existing copy of a particular multi_pass
//
// mp: is a reference to the whole multi_pass instance
//
// The method is expected to return true if this instance is unique
// (no other copies of this multi_pass exist).
template <typename MultiPass>
static bool is_unique(MultiPass const& mp);

};

struct shared {};
};

It is possible to derive the struct unique from the type boost::spirit::detail::default_ownership_policy. This type
implements a minimal sufficient interface for some of the required functions, simplifying the task of writing a new ownership policy.

This class may implement a function destroy() being called during destruction of the last copy of a multi_pass. This function
should be used to free any of the shared data items the policy might have allocated during construction of its shared part. Because
of the way multi_pass is implemented any allocated data members in shared should not be deep copied in a copy constructor of
shared.

CheckingPolicy

The CheckingPolicy must have the following interface:

422

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct checking_policy
{

struct unique
{

// swap is called by multi_pass::swap()
void swap(unique&);

// destroy is called whenever the last copy of a multi_pass is
// destructed (ownership_policy::release() returned true)
//
// mp: is a reference to the whole multi_pass instance
template <typename MultiPass>
static void destroy(MultiPass& mp);

// docheck is called before the multi_pass is dereferenced or
// incremented.
//
// mp: is a reference to the whole multi_pass instance
//
// This method is expected to make sure the multi_pass instance is
// still valid. If it is invalid an exception should be thrown.
template <typename MultiPass>
static void docheck(MultiPass const& mp);

// clear_queue is called whenever the function
// multi_pass::clear_queue is called on this instance
//
// mp: is a reference to the whole multi_pass instance
template <typename MultiPass>
static void clear_queue(MultiPass& mp);

};

struct shared {};
};

It is possible to derive the struct unique from the type boost::spirit::detail::default_checking_policy. This type
implements a minimal sufficient interface for some of the required functions, simplifying the task of writing a new checking policy.

This class may implement a function destroy() being called during destruction of the last copy of a multi_pass. This function
should be used to free any of the shared data items the policy might have allocated during construction of its shared part. Because
of the way multi_pass is implemented any allocated data members in shared should not be deep copied in a copy constructor of
shared.

StoragePolicy

A StoragePolicy must have the following interface:

423

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct storage_policy
{

// Value is the same type as typename MultiPass::value_type
template <typename Value>
struct unique
{

// destroy is called whenever the last copy of a multi_pass is
// destructed (ownership_policy::release() returned true)
//
// mp: is a reference to the whole multi_pass instance
template <typename MultiPass>
static void destroy(MultiPass& mp);

// swap is called by multi_pass::swap()
void swap(unique&);

// dereference is called whenever multi_pass::operator*() is invoked
//
// mp: is a reference to the whole multi_pass instance
//
// This function is expected to return a reference to the current
// character/token.
template <typename MultiPass>
static typename MultiPass::reference dereference(MultiPass const& mp);

// increment is called whenever multi_pass::operator++ is invoked
//
// mp: is a reference to the whole multi_pass instance
template <typename MultiPass>
static void increment(MultiPass& mp);

//
// mp: is a reference to the whole multi_pass instance
template <typename MultiPass>
static void clear_queue(MultiPass& mp);

// is_eof is called to test whether this instance is a end of input
// iterator.
//
// mp: is a reference to the whole multi_pass instance
//
// This method is expected to return true if the end of input is
// reached.
template <typename MultiPass>
static bool is_eof(MultiPass const& mp);

// less_than is called whenever multi_pass::operator==() is invoked
//
// mp: is a reference to the whole multi_pass instance
// rhs: is the multi_pass reference this instance is compared
// to
//
// This function is expected to return true if the current instance
// is eual to the right hand side multi_pass instance
template <typename MultiPass>
static bool equal_to(MultiPass const& mp, MultiPass const& rhs);

// less_than is called whenever multi_pass::operator<() is invoked
//
// mp: is a reference to the whole multi_pass instance
// rhs: is the multi_pass reference this instance is compared
// to
//

424

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// This function is expected to return true if the current instance
// is less than the right hand side multi_pass instance
template <typename MultiPass>
static bool less_than(MultiPass const& mp, MultiPass const& rhs);

};

// Value is the same type as typename MultiPass::value_type
template <typename Value>
struct shared {};

};

It is possible to derive the struct unique from the type boost::spirit::detail::default_storage_policy. This type im-
plements a minimal sufficient interface for some of the required functions, simplifying the task of writing a new storage policy.

This class may implement a function destroy() being called during destruction of the last copy of a multi_pass. This function
should be used to free any of the shared data items the policy might have allocated during construction of its shared part. Because
of the way multi_pass is implemented any allocated data members in shared should not be deep copied in a copy constructor of
shared.

Generally, a StoragePolicy is the trickiest policy to implement. You should study and understand the existing StoragePolicy
classes before you try and write your own.

Spirit FAQ
I'm getting multiple symbol definition errors while using Visual C++. Anything
I could do about that?

Do you see strange multiple symbol definition linker errors mentioning boost::mpl::failed and boost::spirit::qi::rule?
Then this FAQ entry might be for you.

Boost.Mpl implements a macro BOOST_MPL_ASSERT_MSG() which essentially is a more powerfull version of static_assert. Unfor-
tunately under certain circumstances using this macro may lead to the aformentioned linker errors.

Spirit allows you to define a preprocessor constant disabling the usage of BOOST_MPL_ASSERT_MSG(), while switching to
BOOST_STATIC_ASSERT() instead. For that you need define BOOST_SPIRIT_DONT_USE_MPL_ASSERT_MSG=1. Do this by
adding

-DBOOST_SPIRIT_DONT_USE_MPL_ASSERT_MSG=1

on the compiler command line or by inserting a

#define BOOST_SPIRIT_DONT_USE_MPL_ASSERT_MSG 1

into your code before any Spirit headers get included.

Using this trick has no adverse effects on any of the functionality of Spirit. The only change you might see while using this workaround
is less verbose error messages generated from static_assert.

I'm very confused about the header hell in my boost/spirit directory. What's
all this about?

The boost/spirit directory currently holds two versions of the Spirit library: Spirit.Classic (former V1.8.x) and SpiritV2. Both are
completely independent and usually not used at the same time. Do not mix these two in the same grammar.

Spirit.Classic evolved over years in a fairly complex directory structure:

425

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/libs/mpl/index.html
http://spirit.sourceforge.net
http://spirit.sourceforge.net
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost/spirit/actor
boost/spirit/attribute
boost/spirit/core
boost/spirit/debug
boost/spirit/dynamic
boost/spirit/error_handling
boost/spirit/iterator
boost/spirit/meta
boost/spirit/symbols
boost/spirit/tree
boost/spirit/utility

While introducing Spirit V2 we restructured the directory structure in order to accommodate two versions at the same time. All of
Spirit.Classic now lives in the directory

boost/spirit/home/classic

where the directories above contain forwarding headers to the new location allowing to maintain application compatibility. The
forwarding headers issue a warning (starting with Boost V1.38) telling the user to change their include paths. Please expect the above
directories/forwarding headers to go away soon.

This explains the need for the directory

boost/spirit/include

which contains forwarding headers as well. But this time the headers won't go away. We encourage application writers to use only
the includes contained in this directory. This allows us to restructure the directories underneath if needed without worrying application
compatibility. Please use those files in your application only. If it turns out that some forwarding file is missing, please report this
as a bug.

Spirit V2 is not about parsing only anymore (as Spirit.Classic). It now consists out of 3 parts (sub-libraries): Spirit.Qi, Spirit.Karma,
and Spirit.Lex. The header files for those live in

boost/spirit/home/qi
boost/spirit/home/karma
boost/spirit/home/lex

and have forwarding headers in

boost/spirit/include

Spirit.Qi is the direct successor to Spirit.Classic as it implements a DSEL (domain specific embedded language) allowing to write
parsers using the syntax of C++ itself (parsers in the sense turning a sequence of bytes into an internal data structure). It is not com-
patible with Spirit.Classic, the main concepts are similar, though.

Spirit.Karma is the counterpart to Spirit.Qi. It implements a similar DSEL but for writing generators (i.e. the things turning internal
data structures into a sequence of bytes, most of the time - strings). Spirit.Karma is the Yang to Spirit.Qi's Yin, it's almost like a
mirrored picture.

Spirit.Lex is (as the name implies) a library allowing to write lexical analyzers. These are either usable standalone or can be used as
a frontend for Spirit.Qi parsers. If you know flex you shouldn't have problems understanding Spirit.Lex. This library actually doesn't
implement the lexer itself. All it does is to provide an interface to pre-existing lexical analyzers. Currently it's using Ben Hansons
excellent Lexertl library (proposed for a Boost review, BTW) as its underlying workhorse.

Again, don't use any of the header files underneath the boost/spirit/home directory directly, always include files from the
boost/spirit/include directory.

426

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.benhanson.net/lexertl.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The last bit missing is Boost.Phoenix (which currently still lives under the Spirit umbrella, but already has been accepted as a Boost
library, so it will move away). Boost.Phoenix is a library allowing to write functional style C++, which is interesting in itself, but
as it initially has been developed for Spirit, it is nicely integrated and very useful when it comes to writing semantic actions. I think
using the boost/spirit/include/phoenix_... headers will be safe in the future as well, as we will probably redirect to the Boost.Phoenix
headers as soon as these are available.

Why doesn't my symbol table work in a no_case directive?

In order to perform case-insensitive parsing (using no_case) with a symbol table (i.e. use a symbols<Ch, T> parser in a no_case
directive), that symbol table needs to be filled with all-lowercase contents. Entries containing one or more uppercase characters will
not match any input.

I'm getting a compilation error mentioning boost::function and/or boost::function4.
What does this mean?

If you are using Visual C++ and have an error like:

error C2664: 'bool boost::function4<R,T0,T1,T2,T3>::operator ()(T0,T1,T2,T3) const' :
 cannot convert parameter 4 from '...' to '...'

or you are using GCC and have an error like:

error: no match for call to '(const boost::function<bool ()(...)>) (...)'
note: candidates are: ... boost::function4<R,T1,T2,T3,T4>::operator()(T0,T1,T2,T3) const [with ...]

then this FAQ entry may help you.

The definition of a Rule or Grammar may contain a skip parser type. If it does, it means that non-terminal can only be used with a
skip parser of a compatible type. The error above arises when this is not the case, i.e.:

• a non-terminal defined with a skip parser type is used without a skip parser; for example, a rule with a skip parser type is used
inside a lexeme directive, or a grammar with a skip parser type is used in parse instead of phrase_parse,

• or a non-terminal is used with a skip parser of an incompatible type; for example, a rule defined with one skip parser type calls a
second rule defined with another, incompatible skip parser type.

Note

The same applies to Spirit.Karma, replacing 'skip parser' and lexeme by 'delimit generator' and verbatim. Simil-
arily, corresponding error messages in Spirit.Karma reference boost::function3 and the 3rd parameter (instead
of the 4th).

Notes

Porting from Spirit 1.8.x
The current version of Spirit is a complete rewrite of earlier versions (we refer to earlier versions as Spirit.Classic). The parser gen-
erators are now only one part of the whole library. The parser submodule of Spirit is now called Spirit.Qi. It is conceptually different
and exposes a completely different interface. Generally, there is no easy (or automated) way of converting parsers written for Spir-
it.Classic to Spirit.Qi. Therefore this section can give only guidelines on how to approach porting your older parsers to the current
version of Spirit.

427

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://spirit.sourceforge.net
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://spirit.sourceforge.net
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://spirit.sourceforge.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Include Files

The overall directory structure of the Spirit directories is described in the section Include Structure and the FAQ entry Header Hell.
This should give you a good overview on how to find the needed header files for your new parsers. Moreover, each section in the
Qi Reference lists the required include files needed for any particular component.

It is possible to tell from the name of a header file, what version it belongs to. While all main include files for Spirit.Classic have
the string 'classic_' in their name, for instance:

#include <boost/spirit/include/classic_core.hpp>

we named all main include files for Spirit.Qi to have the string 'qi_' as part of their name, for instance:

#include <boost/spirit/include/qi_core.hpp>

The following table gives a rough list of corresponding header file between Spirit.Classic and Spirit.Qi, but this can be used as a
starting point only, as several components have either been moved to different submodules or might not exist in the never version
anymore. We list only include files for the topmost submodules. For header files required for more lower level components please
refer to the corresponding reference documentation of this component.

Include file in Spirit.QiInclude file in Spirit.Classic

qi.hppclassic.hpp

none, use Boost.Phoenix for writing semantic actionsclassic_actor.hpp

none, use local variables for rules instead of closures, the primitives parsers now directly
support lazy parametrization

classic_attribute.hpp

qi_core.hppclassic_core.hpp

qi_debug.hppclassic_debug.hpp

none, use Spirit.Qi predicates instead of if_p, while_p, for_p (included by qi_core.hpp),
the equivalent for lazy_p is now included by qi_auxiliary.hpp

classic_dynamic.hpp

none, included in qi_core.hppclassic_error_handling.hpp

noneclassic_meta.hpp

none, included in qi_core.hppclassic_symbols.hpp

none, not part of Spirit.Qi anymore, these components will be added over time to the Re-
pository

classic_utility.hpp

The Free Parse Functions

The free parse functions (i.e. the main parser API) has been changed. This includes the names of the free functions as well as their
interface. In Spirit.Classic all free functions were named parse. In Spirit.Qi they are are named either qi::parse or
qi::phrase_parse depending on whether the parsing should be done using a skipper (qi::phrase_parse) or not (qi::parse).
All free functions now return a simple bool. A returned true means success (i.e. the parser has matched) or false (i.e. the parser
didn't match). This is equivalent to the former old parse_info member hit. Spirit.Qi doesn't support tracking of the matched input
length anymore. The old parse_info member full can be emulated by comparing the iterators after qi::parse returned.

All code examples in this section assume the following include statements and using directives to be inserted. For Spirit.Classic:

428

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../phoenix/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../repository/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../repository/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/spirit/include/classic.hpp>
#include <boost/spirit/include/phoenix1.hpp>
#include <iostream>
#include <string>

using namespace boost::spirit::classic;

and for Spirit.Qi:

#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <iostream>
#include <string>
#include <algorithm>

using namespace boost::spirit;

The following similar examples should clearify the differences. First the base example in Spirit.Classic:

std::string input("1,1");
parse_info<std::string::iterator> pi = parse(input.begin(), input.end(), int_p);

if (pi.hit)
 std::cout << "successful match!\n";

if (pi.full)
 std::cout << "full match!\n";
else
 std::cout << "stopped at: " << std::string(pi.stop, input.end()) << "\n";

std::cout << "matched length: " << pi.length << "\n";

And here is the equivalent piece of code using Spirit.Qi:

std::string input("1,1");
std::string::iterator it = input.begin();
bool result = qi::parse(it, input.end(), qi::int_);

if (result)
 std::cout << "successful match!\n";

if (it == input.end())
 std::cout << "full match!\n";
else
 std::cout << "stopped at: " << std::string(it, input.end()) << "\n";

// seldomly needed: use std::distance to calculate the length of the match
std::cout << "matched length: " << std::distance(input.begin(), it) << "\n";

The changes required for phrase parsing (i.e. parsing using a skipper) are similar. Here is how phrase parsing works in Spirit.Classic:

429

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::string input(" 1, 1");
parse_info<std::string::iterator> pi = parse(input.begin(), input.end(), int_p, space_p);

if (pi.hit)
 std::cout << "successful match!\n";

if (pi.full)
 std::cout << "full match!\n";
else
 std::cout << "stopped at: " << std::string(pi.stop, input.end()) << "\n";

std::cout << "matched length: " << pi.length << "\n";

And here the equivalent example in Spirit.Qi:

std::string input(" 1, 1");
std::string::iterator it = input.begin();
bool result = qi::phrase_parse(it, input.end(), qi::int_, ascii::space);

if (result)
 std::cout << "successful match!\n";

if (it == input.end())
 std::cout << "full match!\n";
else
 std::cout << "stopped at: " << std::string(it, input.end()) << "\n";

// seldomly needed: use std::distance to calculate the length of the match
std::cout << "matched length: " << std::distance(input.begin(), it) << "\n";

Note, how character parsers are in a separate namespace (here boost::spirit::ascii::space) as Spirit.Qi now supports
working with different character sets. See the section Character Encoding Namespace for more information.

Naming Conventions

In Spirit.Classic all parser primitives have suffixes appended to their names, encoding their type: "_p" for parsers, "_a" for lazy
actions, "_d" for directives, etc. In Spirit.Qi we don't have anything similar. The only suffixes are single underscore letters "_" applied
where the name would otherwise conflict with a keyword or predefined name (such as int_ for the integer parser). Overall, most,
if not all primitive parsers and directives have been renamed. Please see the Qi Quick Reference for an overview on the names for
the different available parser primitives, directives and operators.

Parser Attributes

In Spirit.Classic most of the parser primitives don't expose a specific attribute type. Most parsers expose the pair of iterators pointing
to the matched input sequence. As in Spirit.Qi all parsers expose a parser specific attribute type it introduces a special directive
raw[] allowing to achieve a similar effect as in Spirit.Classic. The raw[] directive exposes the pair of iterators pointing to the
matching sequence of its embedded parser. Even if we very much encourage you to rewrite your parsers to take advantage of the
generated parser specific attributes, sometimes it is helpful to get access to the underlying matched input sequence.

Grammars and Rules

The grammar<> and rule<> types are of equal importance to Spirit.Qi as they are for Spirit.Classic. Their main purpose is still the
same: they allow to define non-terminals and they are the main building blocks for more complex parsers. Nevertheless, both types
have been redesigned and their interfaces have changed. Let's have a look at two examples first, we'll explain the differences afterwards.
Here is a simple grammar and its usage in Spirit.Classic:

430

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct roman : public grammar<roman>
{

template <typename ScannerT>
struct definition
{

 definition(roman const& self)
{

 hundreds.add
("C" , 100)("CC" , 200)("CCC" , 300)("CD" , 400)("D" , 500)
("DC" , 600)("DCC" , 700)("DCCC" , 800)("CM" , 900) ;

 tens.add
("X" , 10)("XX" , 20)("XXX" , 30)("XL" , 40)("L" , 50)
("LX" , 60)("LXX" , 70)("LXXX" , 80)("XC" , 90) ;

 ones.add
("I" , 1)("II" , 2)("III" , 3)("IV" , 4)("V" , 5)
("VI" , 6)("VII" , 7)("VIII" , 8)("IX" , 9) ;

 first = eps_p [phoenix::var(self.r) = phoenix::val(0)]
>> (+ch_p('M') [phoenix::var(self.r) += phoenix::val(1000)]

|| hundreds [phoenix::var(self.r) += phoenix::_1]
|| tens [phoenix::var(self.r) += phoenix::_1]
|| ones [phoenix::var(self.r) += phoenix::_1]
) ;

}

 rule<ScannerT> first;
 symbols<unsigned> hundreds;
 symbols<unsigned> tens;
 symbols<unsigned> ones;

 rule<ScannerT> const& start() const { return first; }
};

 roman(unsigned& r_) : r(r_) {}
unsigned& r;

};

std::string input("MMIX"); // MMIX == 2009
unsigned value = 0;
roman r(value);
parse_info<std::string::iterator> pi = parse(input.begin(), input.end(), r);
if (pi.hit)
 std::cout << "successfully matched: " << value << "\n";

And here is a similar grammar and its usage in Spirit.Qi:

431

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Iterator>
struct roman : qi::grammar<Iterator, unsigned()>
{
 roman() : roman::base_type(first)

{
 hundreds.add

("C" , 100)("CC" , 200)("CCC" , 300)("CD" , 400)("D" , 500)
("DC" , 600)("DCC" , 700)("DCCC" , 800)("CM" , 900) ;

 tens.add
("X" , 10)("XX" , 20)("XXX" , 30)("XL" , 40)("L" , 50)
("LX" , 60)("LXX" , 70)("LXXX" , 80)("XC" , 90) ;

 ones.add
("I" , 1)("II" , 2)("III" , 3)("IV" , 4)("V" , 5)
("VI" , 6)("VII" , 7)("VIII" , 8)("IX" , 9) ;

// qi::_val refers to the attribute of the rule on the left hand side
 first = eps [qi::_val = 0]

>> (+lit('M') [qi::_val += 1000]
|| hundreds [qi::_val += qi::_1]
|| tens [qi::_val += qi::_1]
|| ones [qi::_val += qi::_1]
) ;

}

 qi::rule<Iterator, unsigned()> first;
 qi::symbols<char, unsigned> hundreds;
 qi::symbols<char, unsigned> tens;
 qi::symbols<char, unsigned> ones;
};

std::string input("MMIX"); // MMIX == 2009
std::string::iterator it = input.begin();
unsigned value = 0;
roman<std::string::iterator> r;
if (qi::parse(it, input.end(), r, value))
 std::cout << "successfully matched: " << value << "\n";

Both versions look similarily enough, but we see several differences (we will cover each of those differences in more detail below):

• Neither the grammars nor the rules depend on a scanner type anymore, both depend only on the underlying iterator type. That
means the dreaded scanner business is no issue anymore!

• Grammars have no embedded class definition anymore

• Grammars and rules may have an explicit attribute type specified in their definition

• Grammars do not have any explicit start rules anymore. Instead one of the contained rules is used as a start rule by default.

The first two points are tightly interrelated. The scanner business (see the FAQ number one of Spirit.Classic here: The Scanner
Business) has been a problem for a long time. The grammar and rule types have been specifically redesigned to avoid this problem
in the future. This also means that we don't need any delayed instantiation of the inner definition class in a grammar anymore. So
the redesign not only helped fixing a long standing design problem, it helped to simplify things considerably.

All Spirit.Qi parser components have well defined attribute types. Grammars and rules are no exception. But since both need to be
generic enough to be usable for any parser their attribute type has to be explicitly specified. In the example above the roman grammar
and the rule first both have an unsigned attribute:

432

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/index.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/doc/faq.html#scanner_business
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../../../libs/spirit/classic/doc/faq.html#scanner_business
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// grammar definition
template <typename Iterator>
struct roman : qi::grammar<Iterator, unsigned()> {...};

// rule definition
qi::rule<Iterator, unsigned()> first;

The used notation resembles the definition of a function type. This is very natural as you can think of the synthesized attribute of
the grammar and the rule as of its 'return value'. In fact the rule and the grammar both 'return' an unsigned value - the value they
matched.

Note

The function type notation allows to specify parameters as well. These are interpreted as the types of inherited at-
tributes the rule or grammar expect to be passed during parsing. For more information please see the section about
inherited and synthesized attributes for rules and grammars (Attributes).

If no attribute is desired none needs to be specified. The default attribute type for both, grammars and rules, is unused_type, which
is a special placeholder type. Generally, using unused_type as the attribute of a parser is interpreted as 'this parser has no attribute'.
This is mostly used for parsers applied to parts of the input not carrying any significant information, rather being delimiters or
structural elements needed for correct interpretation of the input.

The last difference might seem to be rather cosmetic and insignificant. But it turns out that not having to specify which rule in a
grammar is the start rule (by returning it from the function start()) also means that any rule in a grammar can be directly used as
the start rule. Nevertheless, the grammar base class gets initialized with the rule it has to use as the start rule in case the grammar
instance is directly used as a parser.

Style Guide
At some point, especially when there are lots of semantic actions attached to various points, the grammar tends to be quite difficult
to follow. In order to keep an easy-to-read, consistent and aesthetically pleasing look to the Spirit code, the following coding styleguide
is advised.

This coding style is adapted and extended from the ANTLR/PCCTS style and Boost Library Requirements and Guidelines and is
the combined work of Joel de Guzman, Chris Uzdavinis, and Hartmut Kaiser.

• Rule names use std C++ (Boost) convention. The rule name may be very long.

• The '=' is neatly indented 4 spaces below. Like in Boost, use spaces instead of tabs.

• Breaking the operands into separate lines puts the semantic actions neatly to the right.

• Semicolon at the last line terminates the rule.

• The adjacent parts of a sequence should be indented accordingly to have all, what belongs to one level, at one indentation level.

program
= program_heading [heading_action]

>> block [block_action]
>> '.'

| another_sequence
>> etc

;

• Prefer literals in the grammar instead of identifiers. e.g. "program" instead of PROGRAM, '>=' instead of GTE and '.' instead
of DOT. This makes it much easier to read. If this isn't possible (for instance where the used tokens must be identified through integers)
capitalized identifiers should be used instead.

433

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/development/requirements.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Breaking the operands may not be needed for short expressions. e.g. *(',' >> file_identifier) as long as the line does
not exceed 80 characters.

• If a sequence fits on one line, put spaces inside the parentheses to clearly separate them from the rules.

program_heading
= no_case["program"]

>> identifier
>> '('
>> file_identifier
>> *(',' >> file_identifier)
>> ')'
>> ';'

;

• Nesting directives: If a rule does not fit on one line (80 characters) it should be continued on the next line intended by one level.
The brackets of directives, semantic expressions (using Phoenix or LL lambda expressions) or parsers should be placed as follows.

identifier
= no_case

[
 lexeme

[
 alpha >> *(alnum | '_') [id_action]

]
]

;

• Nesting unary operators (e.g.Kleene star): Unary rule operators (Kleene star, '!', '+' etc.) should be moved out one space before
the corresponding indentation level, if this rule has a body or a sequence after it, which does not fit on on line. This makes the
formatting more consistent and moves the rule 'body' at the same indentation level as the rule itself, highlighting the unary operator.

block
= *(label_declaration_part

| constant_definition_part
| type_definition_part
| variable_declaration_part
| procedure_and_function_declaration_part
)
>> statement_part

;

Spirit Repository
The Spirit repository is a community effort collecting different reusable components (primitives, directives, grammars, etc.) for
Spirit.Qi parsers and Spirit.Karma generators. All components in the repository have been peer reviewed or discussed on the Spirit
General List. For more information about the repository see here.

Acknowledgments
This version of Spirit is a complete rewrite of the classic Spirit many people have been contributing to (see below). But there are a
couple of people who already managed to help significantly during this rewrite. We would like to express our special acknowledgement
to:

Eric Niebler for writing Boost.Proto, without which this rewrite wouldn't have been possible, and helping with examples, advices,
and suggestions on how to use Boost.Proto in the best possible way.

434

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://spirit.sourceforge.net
http://www.nabble.com/The-Spirit-Parser-Library-f3430.html
http://www.nabble.com/The-Spirit-Parser-Library-f3430.html
http://www.boost.org/doc/libs/release/libs/spirit/doc/html/../../repository/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Ben Hanson for providing us with an early version of his Lexertl library, which is proposed to be included into Boost (as
Boost.Lexer). At the time of this writing the Boost review for this library is still pending.

Francois Barel for his silent but steady work on making and keeping Spirit compatible with all versions of gcc, older and newest
ones. He not only contributed subrules to Spirit V2.1, but always keeps an eye on the small details which are so important to make
a difference.

Andreas Haberstroh for proof reading the documentation and fixing those non-native-speaker-quirks we managed to introduce
into the first versions of the documentation.

Chris Hoeppler for taking up the editorial tasks for the initial version of this documentation together with Andreas Haberstroh.
Chris did a lot especially at the last minute when we are about to release.

Michael Caisse also for last minute editing work on the 2.1 release documentation.

Tobias Schwinger for proposing expectation points and GCC port of an early version.

Dave Abrahams as always, for countless advice and help on C++, library development, interfaces, usability and ease of use, for
reviewing the code and providing valuable feedback and for always keeping us on our toes.

OvermindDL for his creative ideas on the mailing list helping to resolve even more difficult user problems.

Carl Barron for his early adoption and valuable feedback on the Lexer library forcing us to design a proper API covering all of his
use cases. He also contributed an early version of the variadic attribute API for Qi.

Daniel James for improving and maintaining Quickbook, the tool we use for this documentation. Also, for bits and pieces here and
there such documentation suggestions and editorial patches.

Stephan Menzel for his early adoption of Qi and Karma and his willingness to invest time to spot bugs which were hard to isolate.
Also, for his feedback on the documentation.

Ray Burkholder and Dainis Polis for last minute feedback on the documentation.

Special thanks to spirit-devel and spirit-general mailing lists for participating in the discussions, being early adopters of pre-release
versions of Spirit2 from the very start and helping out in various tasks such as helping with support, bug tracking, benchmarking
and testing, etc. The list include: Larry Evans, Richard Webb, Martin Wille, Dan Marsden, Cedric Venet, Allan Odgaard,
Matthias Vallentin, Justinas V.D., Darid Tromer.

Joao Abecasis for his early support and involvement in Spirit2 development and for disturbing my peace every once in a while for
a couple of jokes.

The list goes on and on... if you've been mentioned thank Joel and Hartmut, if not, kick Joao :-)

Acknowledgements from the Spirit V1 classic Documentation

Special thanks for working on Spirit classic to:

Dan Nuffer for his work on lexers, parse trees, ASTs, XML parsers, the multi-pass iterator as well as administering Spirit's site,
editing, maintaining the CVS and doing the releases plus a zillion of other chores that were almost taken for granted.

Hartmut Kaiser for his work on the C parser, the work on the C/C++ preprocessor, utility parsers, the original port to Intel 5.0,
various work on Phoenix, porting to v1.5, the meta-parsers, the grouping-parsers, extensive testing and painstaking attention to details.

Martin Wille who improved grammar multi thread safety, contributed the eol_p parser, the dynamic parsers, documentation and
for taking an active role in almost every aspect from brainstorming and design to coding. And, as always, helps keep the regression
tests for g++ on Linux as green as ever :-).

Martijn W. Van Der Lee our Web site administrator and for contributing the RFC821 parser.

435

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.benhanson.net/lexertl.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Giovanni Bajo for last minute tweaks of Spirit 1.8.0 for CodeWarrior 8.3. Actually, I'm ashamed Giovanni was not in this list
already. He's done a lot since Spirit 1.5, the first Boost.Spirit release. He's instrumental in the porting of the Spirit iterators stuff to
the new Boost Iterators Library (version 2). He also did various bug fixes and wrote some tests here and there.

Juan Carlos Arevalo-Baeza (JCAB)* for his work on the C++ parser, the position iterator, ports to v1.5 and keeping the mailing
list discussions alive and kicking.

Vaclav Vesely, lots of stuff, the no_actions directive, various patches fixes, the distinct parsers, the lazy parser, some phoenix tweaks
and add-ons (e.g. new_). Also, *Stefan Slapeta] and wife for editing Vaclav's distinct parser doc.

Raghavendra Satish for doing the original v1.3 port to VC++ and his work on Phoenix.

Noah Stein for following up and helping Ragav on the VC++ ports.

Hakki Dogusan, for his original v1.0 Pascal parser.

John (EBo) David for his work on the VM and watching over my shoulder as I code giving the impression of distance eXtreme
programming.

Chris Uzdavinis for feeding in comments and valuable suggestions as well as editing the documentation.

Carsten Stoll, for his work on dynamic parsers.

Andy Elvey and his conifer parser.

Bruce Florman, who did the original v1.0 port to VC++.

Jeff Westfahl for porting the loop parsers to v1.5 and contributing the file iterator.

Peter Simons for the RFC date parser example and tutorial plus helping out with some nitty gritty details.

Markus Schöpflin for suggesting the end_p parser and lots of other nifty things and his active presence in the mailing list.

Doug Gregor for mentoring and his ability to see things that others don't.

David Abrahams for giving Joel a job that allows him to still work on Spirit, plus countless advice and help on C++ and specifically
template metaprogramming.

Aleksey Gurtovoy for his MPL library from which we stole many metaprogramming tricks especially for less conforming compilers
such as Borland and VC6/7.

Gustavo Guerra for his last minute review of Spirit and constant feedback, plus patches here and there (e.g. proposing the new dot
behavior of the real numerics parsers).

Nicola Musatti, Paul Snively, Alisdair Meredith and Hugo Duncan for testing and sending in various patches.

Steve Rowe for his splendid work on the TSTs that will soon be taken into Spirit.

Jonathan de Halleux for his work on actors.

Angus Leeming for last minute editing work on the 1.8.0 release documentation, his work on Phoenix and his active presence in
the Spirit mailing list.

Joao Abecasis for his active presence in the Spirit mailing list, providing user support, participating in the discussions and so on.

Guillaume Melquiond for a last minute patch to multi_pass for 1.8.1.

Peder Holt for his porting work on Phoenix, Fusion and Spirit to VC6.

To Joels wife Mariel who did the graphics in this document.

436

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

My, there's a lot in this list! And it's a continuing list. We add people to this list everytime. We hope we did not forget anyone. If we
missed someone you know who has helped in any way, please inform us.

Special thanks also to people who gave feedback and valuable comments, particularly members of Boost and Spirit mailing lists.
This includes all those who participated in the review:

John Maddock, our review manager, Aleksey Gurtovoy, Andre Hentz, Beman Dawes, Carl Daniel, Christopher Currie, Dan
Gohman, Dan Nuffer, Daryle Walker, David Abrahams, David B. Held, Dirk Gerrits, Douglas Gregor, Hartmut Kaiser, Iain
K.Hanson, Juan Carlos Arevalo-Baeza, Larry Evans, Martin Wille, Mattias Flodin, Noah Stein, Nuno Lucas, Peter Dimov,
Peter Simons, Petr Kocmid, Ross Smith, Scott Kirkwood, Steve Cleary, Thorsten Ottosen, Tom Wenisch, Vladimir Prus

Finally thanks to SourceForge for hosting the Spirit project and Boost: a C++ community comprised of extremely talented library
authors who participate in the discussion and peer review of well crafted C++ libraries.

437

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

References

438

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Title, Publisher/link, Date PublishedAuthors

"Expression Templates". C++ Report, June 1995.Todd Veldhuizen1.

"Report on the Algorithmic Language ALGOL 60". CACM, May 1960.Peter Naur (ed.)2.

"ISO-EBNF", ISO/IEC 14977: 1996(E).ISO/IEC3.

"XBNF" (citing Leu-Weiner, 1973). California State University, San Bern-
ardino, 1998.

Richard J.Botting, Ph.D.4.

"Curiously Recurring Template Pattern". C++ Report, Feb. 1995.James Coplien.5.

Generic Programming Redesign of Patterns Proceedings of the 5th European
Conference on Pattern Languages of Programs(EuroPLoP'2000) Irsee, Ger-
many, July 2000.

Thierry Geraud and Alexandre Duret-Lutz6.

"Disambiguated Glommable Expression Templates Reintroduced" C++ Re-
port, May 2000

Geoffrey Furnish7.

Design Patterns, Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

Erich Gamma, Richard Helm, Ralph Jhon-
son, and John Vlissides

8.

Compilers, Principles, Techniques and Tools Addison-Wesley, June 1987.Alfred V. Aho, Revi Sethi, Feffrey D. Ul-
man

9.

Parsing Techniques: A Practical Guide. Ellis Horwood Ltd.: West Sussex,
England, 1990. (electronic copy, 1998).

Dick Grune and Ceriel Jacobs10.

PCCTS Reference Manual (Version 1.00). School of Electrical Engineering,
Purdue University, West Lafayette, August 1991.

T. J. Parr, H. G. Dietz, and W. E. Cohen11.

RDP, A Recursive Descent Compiler Compiler. Technical Report CSD TR
97 25, Dept. of Computer Science, Egham, Surrey, England, Dec. 20, 1997.

Adrian Johnstone and Elizabeth Scott.12.

Languages and Architectures, Parser generators with backtrack or extended
lookahead capability Department of Computer Science, Royal Holloway,
University of London, Egham, Surrey, England

Adrian Johnstone13.

Parsing with C++ Classes. ACM SIGPLAN Notices, 29:1, 1994.Damian Conway14.

"Spirit Version 1.8", 1998-2003.Joel de Guzman15.

Deterministic, Error-Correcting Combinator Parsers Dept. of Computer Sci-
ence, Utrecht University P.O.Box 80.089, 3508 TB Utrecht, The Netherland

S. Doaitse Swierstra and Luc Duponcheel16.

Generalizing Overloading for C++2000 Overload, Issue 25. April 1, 1998.Bjarne Stroustrup17.

Regex++ Documentation http://www.boost.org/libs/regex/index.htmDr. John Maddock18.

Frequently Asked Questions for comp.lang.functional. Edited by Graham
Hutton, University of Nottingham.

Anonymous Edited by Graham Hutton19.

Standard Template Library Programmer's Guide., Hewlett-Packard Company,
1994

Hewlett-Packard20.

Boost Libraries Documentation.Boost Libraries21.

439

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.extreme.indiana.edu/%7Etveldhui/papers/Expression-Templates/exprtmpl.html
http://www.masswerk.at/algol60/report.htm
http://www.cl.cam.ac.uk/%7Emgk25/iso-14977.pdf
http://www.csci.csusb.edu/dick/maths/intro_ebnf.html
http://www.coldewey.com/europlop2000/papers/geraud%2Bduret.zip
http://www.adtmag.com/joop/carticle.aspx?ID=627
http://www.cs.vu.nl/%7Edick/PTAPG.html
http://citeseer.ist.psu.edu/6885.html
ftp://ftp.cs.rhul.ac.uk/pub/rdp
http://www.cs.rhul.ac.uk/research/languages/projects/lookahead_backtrack.shtml
http://www.cs.rhul.ac.uk/research/languages/projects/lookahead_backtrack.shtml
http://www.csse.monash.edu.au/%7Edamian/papers/#Embedded_Input_Parsing_for_C
http://spirit.sourceforge.net/distrib/spirit_1_8_5/libs/spirit/index.html
http://citeseer.ist.psu.edu/448665.html
http://www.research.att.com/%7Ebs/whitespace98.pdf
http://www.boost.org/libs/regex/index.html
http://www.cs.nott.ac.uk/~gmh//faq.html
http://www.sgi.com/tech/stl/
http://boost.org/libs/libraries.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Title, Publisher/link, Date PublishedAuthors

FC++:Functional Programming in C++.Brian McNamara and Yannis Smaragdakis22.

Techniques for Scientic C++.Todd Veldhuizen23.

440

Spirit 2.2

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.cc.gatech.edu/~yannis/fc++/
ftp://ftp.cs.indiana.edu/pub/techreports/TR542.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Spirit 2.2
	Table of Contents
	Preface
	What's New
	Introduction
	Structure
	Include

	Abstracts
	Syntax Diagram
	Parsing Expression Grammar
	Attributes
	Attributes of Primitive Components
	Attributes of Compound Components
	More About Attributes of Compound Components
	Attributes of Rules and Grammars

	Qi - Writing Parsers
	Tutorials
	Quick Start
	Warming up
	Semantic Actions
	Complex - Our first complex parser
	Sum - adding numbers
	Number List - stuffing numbers into a std::vector
	Number List Redux - list syntax
	Number List Attribute - one more, with style
	Roman Numerals
	Employee - Parsing into structs
	Mini XML - ASTs!
	Mini XML - Error Handling

	Quick Reference
	Common Notation
	Qi Parsers
	Character Parsers
	Numeric Parsers
	String Parsers
	Auxiliary Parsers
	Binary Parsers
	Auto Parsers
	Parser Directives
	Parser Operators
	Parser Semantic Actions

	Compound Attribute Rules
	Nonterminals
	Semantic Actions
	Phoenix

	Reference
	Parser Concepts
	Parser
	PrimitiveParser
	UnaryParser
	BinaryParser
	NaryParser
	Nonterminal

	Basics
	Parser API
	Iterator Based Parser API
	Stream Based Parser API
	API for Automatic Parser Creation

	Action
	Auto
	Auxiliary
	Attribute (attr)
	Attribute Transformation Pseudo Generator (attr_cast)
	End of Line (eol)
	End of Input (eoi)
	Epsilon (eps)
	Lazy (lazy)

	Binary
	Binary Native Endian
	Binary Little Endian
	Binary Big Endian

	Char
	Char (char_, lit)
	Char Classification (alnum, digit, etc.)

	Directive
	Inhibiting Skipping (lexeme[])
	Inhibiting Case Sensitivity (no_case[])
	Ignoring Attribute (omit[])
	Transduction Parsing (raw[])
	Repetition (repeat[])
	Test if Parser Succeeded (matches[])
	Re-Establish Skipping (skip[])

	Nonterminal
	Rule
	Grammar

	Numeric
	Unsigned Integers (uint_, etc.)
	Signed Integers (int_, etc.)
	Real Numbers (float_, double_, etc.)
	Boolean Parser (bool_)

	Operator
	Alternative (a | b)
	And-Predicate (&a)
	Difference (a - b)
	Expectation (a > b)
	Kleene (*a)
	List (a % b)
	Not-Predicate (!a)
	Optional (-a)
	Permutation (a ^ b)
	Plus (+a)
	Sequence (a >> b)
	Sequential Or (a || b)

	Stream
	Stream (stream, wstream, etc.)

	String
	String (string, lit)
	Symbols (symbols)

	Karma - Writing Generators
	Tutorials
	Quick Start
	Warming up
	Semantic Actions
	Complex - A first more complex generator
	Complex - Made easier
	Number List - Printing Numbers From a std::vector
	Matrix of Numbers - Printing Numbers From a Matrix

	Quick Reference
	Common Notation
	Karma Generators
	Character Generators
	String Generators
	Real Number Generators
	Integer Generators
	Unsigned Integer Generators
	Boolean Generators
	Stream Generators
	Binary Generators
	Auxiliary Generators
	Auto Generators
	Generator Operators
	Generator Directives
	Generator Semantic Actions

	Compound Attribute Rules
	Nonterminals
	Semantic Actions
	Phoenix

	Reference
	Generator Concepts
	Generator
	PrimitiveGenerator
	UnaryGenerator
	BinaryGenerator
	NaryGenerator
	Nonterminal

	Basics
	Generator API
	Iterator Based Generator API
	Stream Based Generator API
	API for Automatic Generator Creation

	Action
	Auto
	Auxiliary
	Attribute Transformation Pseudo Generator (attr_cast)
	End of Line (eol)
	Epsilon (eps)
	Lazy (lazy)

	Binary
	Binary Native Endianness Generators
	Binary Little Endianness Generators
	Binary Big Endianness Generators

	Char
	Character Generators (char_, lit)
	Character Classification (alnum, digit, etc.)

	Directive
	Alignment Directives (left_align[], center[], right_align[])
	Repetition Directive (repeat[])
	Directives Controlling Automatic Delimiting (verbatim[], delimit[])
	Directives Controlling Case Sensitivity (upper[], lower[])
	Controlling the Maximum Field Width (maxwidth[])
	Temporary Output Buffering (buffer[])
	Consume Attribute (omit[])
	Separate Output Into Columns (columns[])

	Nonterminal
	Rule
	Grammar

	Numeric
	Unsigned Integer Number Generators (uint_, etc.)
	Signed Integer Number Generators (int_, etc.)
	Real Number Generators (float_, double_, etc.)
	Boolean Generators (bool_)

	Operator
	Sequences (a << b)
	Alternative (a | b)
	Kleene Star (*a)
	Plus (+a)
	Lists (a % b)
	Optional (-a)
	And-Predicate (&a)
	Not-Predicate (!a)

	Stream
	Stream (stream, wstream, etc.)

	String
	String (string, lit)
	Symbols (symbols)

	Performance Measurements
	Performance of Numeric Generators
	Comparing the performance of a single int_ generator
	Comparing the performance of a single double_ generator
	Comparing the performance of a sequence of several generators

	Lex - Writing Lexical Analyzers
	Introduction to Spirit.Lex
	Spirit.Lex Tutorials
	Spirit.Lex Tutorials Overview
	Quickstart 1 - A word counter using Spirit.Lex
	Quickstart 2 - A better word counter using Spirit.Lex
	Quickstart 3 - Counting Words Using a Parser

	Abstracts
	Lexer Primitives
	About Tokens and Token Values

	Tokenizing Input Data
	Lexer Semantic Actions
	The Static Lexer Model

	Quick Reference
	Common Notation
	Primitive Lexer Components
	Semantic Actions
	Phoenix
	Supported Regular Expressions

	Reference
	Lexer Concepts
	Lexer
	PrimitiveLexer
	UnaryLexer
	NaryLexer

	Basics
	Lexer API
	Token definition Primitives
	Tokens Matching Single Characters

	Advanced
	In Depth
	Parsers in Depth

	Customization of Spirit's Attribute Handling
	Determine if a Type Should be Treated as a Container (Qi and Karma)
	Transform an Attribute to a Different Type (Qi and Karma)
	Store a Parsed Attribute Value (Qi)
	Store an Attribute after a Parser Produced a Pair of Iterators (Qi)
	Store an Attribute Value after a Parser Produced a Value (Qi)

	Store Parsed Attribute Values into a Container (Qi)
	Determine the Type to be Stored in a Container (Qi)
	Store a Parsed Attribute Value into a Container (Qi)

	Re-Initialize an Attribute Value before Parsing (Qi)
	Extract an Attribute Value to Generate Output (Karma)
	Extract Attribute Values to Generate Output from a Container (Karma)
	Determine the Type of the Iterator of a Container (Karma)
	Get the Iterator pointing to the Begin of a Container Attribute
	Get the Iterator pointing to the End of a Container Attribute
	Increment the Iterator pointing into a Container Attribute
	Dereference the Iterator pointing into a Container Attribute
	Compare two Iterator pointing into a Container Attribute for Equality

	Create Components from Attributes
	Define a Custom Attribute Mapping for a Parser
	Define a Custom Attribute Mapping for a Generator

	Supporting libraries
	The multi pass iterator

	Spirit FAQ
	Notes
	Porting from Spirit 1.8.x
	Style Guide

	Spirit Repository
	Acknowledgments
	References

