
Spirit:
History and Evolution

Joel de Guzman (joel@boostpro.com)
Hartmut Kaiser (hkaiser@cct.lsu.edu)

mailto:joel@boostpro.com
mailto:hkaiser@cct.lsu.edu
mailto:hkaiser@cct.lsu.edu

Timeline

• 80 - 90s Formative Years

• Pascal, Recursive Descent, Syntax Diagrams

• WWW, Text Based Protocols, Small Languages

• C++

• Dynamic Spirit

• Template Metaprogramming, Generative Programming, Expression Templates

• 2000-2001

• Static Spirit

• Boost Debut

• SourceForge

• 2002

• Phoenix 1.0

• Spirit X

• Spirit Meta Lib

• Spirit Formal Review

• MPL Formal Review

• Lambda Formal Review

2

B
o

o
st

C
o

n
 2

0
1

0

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

Timeline
• 2003

• Wave

• Spirit 1.8

• CUJ Article

• Fusion

• 2004-2005

• Spirit 2 Design

• Karma (Tirips)

• Xpressive Formal Review

• Wave Formal Review

• FC++ Formal Review

• Fusion 2

• Phoenix 2

• 2006-2007

• Proto

• Spirit 2 Development

• BoostCon

• Fusion Formal Review

• 2008

• Proto Formal Review

• Phoenix Formal Review

3

B
o

o
st

C
o

n
 2

0
1

0

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

Dynamic Spirit

• Library Based

• Recursive descent

• No separate lexer

• Parser objects
• virtual functions (virtual parse member function)

• Fine grained one-shot objects

• Composition of Parser objects
• pointer to base

4

“Experience shows that software development involves lots of
parsing … Most of the time, without realizing it, we are coding a
parser by hand.”

Old Spirit Docs ~2000

B
o

o
st

C
o

n
 2

0
1

0

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

SEBNF (Spirit EBNF)

A snippet of the specification of the parser written in itself following the meta-language:

grammar : production*;

production : ruleID ':' alternative ';';

alternative : difference ([|!# difference)*;

difference : xor ('-' xor)*;

xor : intersection ('^' intersection)*;

intersection : sequence ('&' sequence)*;

sequence : iteration (iteration)*;

iteration : action { + | iterator };

iterator : '@' { integer } { '..' (integer | '.') };

action : basic { ':' actionID };

B
o

o
st

C
o

n
 2

0
1

0

5

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

Match Composition
/*===

 Spirit Class Library

 Copyright (c) 1999, 2000, Joel de Guzman

 InterXys Inc. All rights reserved.

 Recursive descent parser compiler. Dynamically compiles

 Extended BNF (EBNF) production rules into a working parser.

 The parser acts on the character level and thus obviates

 the need for a separate lexical analyzer stage.

 The generated parser is a hierarchical structure composed

 of Match objects (see Match.hpp). The top-down descent

 traverses the hierarchy, checking each object for a match,

 back-tracking and checking all possible alternatives. Object

 aggregation allows access to any of the step in the recursive

 descent. In addition, named semantic actions can be attached

 to any level within the hierarchy. These actions are C/C++

 functions that will be called if a match is found.

 The complete specification and additional documentation is

 found in the document parser.doc.

===*/

B
o

o
st

C
o

n
 2

0
1

0

6

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

Match Composition

class Match

public:

 Match();

 virtual ~Match();

 virtual bool Parse(Scanner& str) const = 0;

private:

 Match(Match const&); // no copy

 Match& operator = (Match const&); // no assign

};

B
o

o
st

C
o

n
 2

0
1

0

7

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

Match Composition

/*===

 AndMatch::Parse(Scanner& str) const

 Return true if both the left and the right match the 'str'.

 The 'str' pointer is advanced only if both the left and right

 result in a full match.

===*/

bool AndMatch::Parse(Scanner& str) const

{

 Scanner s = str;

 if (Left()->Parse(s) && Right()->Parse(s))

 {

 str = s;

 return true;

 }

 return false;

}

B
o

o
st

C
o

n
 2

0
1

0

8

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

Static Spirit

• Hand-coded parser for parsing SEBNF grammars

• Bootstrap! (Write Spirit in Spirit)
• Possible but not efficient

• I need a super efficient Parser kernel

• It must be as efficient as the hand coded parser

• Template Metaprogramming / Expression Templates
• James Coplien. Curiously Recurring Template Pattern. February

1995

• Todd Veldhuizen. Expression Templates . C++ Report, June 1995
• Geoffrey Furnish. Disambiguated Glommable Expression Templates

Reintroduced. C++ Report. March, 2000

• clc++m
• Andrei Alexandrescu

• Boost

B
o

o
st

C
o

n
 2

0
1

0

9

“Awesome. I was looking at it right now...
the work is fabulous man! Be sure to: 1. Post
it to clc++m 2. Write an article on it for CUJ.”

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

Static Spirit CRTP

template <typename Derived>

struct Parser

{

 /***/

 Derived& GetDerived()

 {

 return *static_cast<Derived*>(this);

 }

 Derived const& GetDerived() const

 {

 return *static_cast<Derived const*>(this);

 }

};

B
o

o
st

C
o

n
 2

0
1

0

10

The parse member function is conceptual, as opposed to virtual, in
the sense that the base class parser does not really have any such
member function. Subclasses must provide one. The conceptual
base class is a template class parametized by its subclass, which
gives it access to its subclass. Whenever a parser is asked to do its
task, it delegates the task to its subclass. This process is very
similar to how virtual functions work, but the difference is that the
member function is bound statically instead of dynamically (run-
time bound). James Coplien first popularized this technique of
compile-time polymorphism in an article in C++ Report entitled
"Curiously Recurring Template Patterns"

The Spirit Parser Library: Inline Parsing in C++
de Guzman, Nuffer
CUJ Sept 2003

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

Static Spirit
template <typename A, typename B>

struct Sequence : public Binary<A, B>, public Parser<Sequence<A, B> > {

 Sequence(A const& a, B const& b) : Binary<A, B>(a, b) {}

 template <typename Scanner>

 Match

 Parse(Scanner& scanner) const

 {

 Scanner s = scanner;

 Match ma, mb;

 if ((ma = SubjectA().Parse(s)) && (mb = SubjectB().Parse(s)))

 {

 scanner = s;

 return ma + mb;

 }

 return Match();

 }

};

B
o

o
st

C
o

n
 2

0
1

0

11

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

Boost Intro

May 21, 2001

Hello there,

Spirit is an object oriented recursive …

I wonder if anyone out there would be interested in such a beast.

If anyones's interested, I'd be very glad to boostify the code

and collaborate with people.

I would appreciate feedback and comments.

Regards,

Joel de Guzman

B
o

o
st

C
o

n
 2

0
1

0

12

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

Boost Intro

Vesa Karvonen
it can make implementing micro parsers an order of magnitude more
intuitive and simpler compared to traditional methods.

Greg Colvin
I've been wanting to combine Conway's ideas with the Boost regex
library, but given how unlikely I am to have the time I'm happy to see the
Spirit work go forward in Boost.

Hubert HOLIN
Having the ability to code thus within a legitimate C++ fragment would be
invaluable to me.

Douglas Gregor
I think the Spirit C++ parser framework has a clean, readable syntax and that
it could form the basis for a great parsing library. I can envision using Spirit
C++ syntax and having several back-ends that can generate more efficient
parsers, but in-place.

B
o

o
st

C
o

n
 2

0
1

0

13

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

The C Parser

10/16/2001
Hi Joel,

I'm very interested in Spirit since the very first steps of Spirit on the boost list some
time ago.

Now I wanted to use Spirit for one of my projects. As an exercise and for getting
some experience with your library I implemented a C grammar checker which
wasn't so difficult :-) as I thought. The main problems I faced where the need for
left recursion free rules and special needs for not matching the shortest possible
rules.

Is there any interest in adding this parser as a sample to your library?

BTW I'm using the Intel V5.0.1 compiler with STLPort 4.5 on W2K and there was
only one minor change required to compile my parser successfully.

Thanks and regards
Hartmut Kaiser

14

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

B

o
o

st
C

o
n

 2
0

1
0

Semantic Expressions

• Transduction Parsing

• Semantic actions
void push(char const* str, char const* end)

{

 my_vec.push_back(std::strtol(str, NULL, 10));

}

B
o

o
st

C
o

n
 2

0
1

0

15

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

Semantic Expressions

• Transduction Parsing

• Semantic actions
void push(char const* str, char const* end)

{

 my_vec.push_back(std::strtol(str, NULL, 10));

}

• ASTs
• Dan Nuffer

• Attributes
• int_p int attribute
void push(int attr)

{

 my_vec.push_back(attr);

}

B
o

o
st

C
o

n
 2

0
1

0

16

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

Semantic Expressions
expression

 = term[expression.val = arg1]

 >> *(('+' >> term[expression.val += arg1])

 | ('-' >> term[expression.val -= arg1])

)

 ;

term

 = factor[term.val = arg1]

 >> *(('*' >> factor[term.val *= arg1])

 | ('/' >> factor[term.val /= arg1])

)

 ;

factor

 = ureal_p[factor.val = arg1]

 | '(' >> expression[factor.val = arg1] >> ')'

 | ('-' >> factor[factor.val = -arg1])

 | ('+' >> factor[factor.val = arg1])

 ;

B
o

o
st

C
o

n
 2

0
1

0

17

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

Semantic Expressions

• Spirit 1.0 had offline semantic actions
• E.g. int_p[assign_a(x)]

• There was a whole set of “predefined” actions out of the box.

• Development began with SpiritX

• SpiritX will allow inline “Semantic Expressions”
• E.g int_p[var(x) = arg1]

• Hence became the SE framework (Semantic Expressions
Framework)
• Arguments were always const

• Supports only 3 arguments (Spirit requires only two)

• SE was generalized and decoupled from Spirit and later
became known as Phoenix

B
o

o
st

C
o

n
 2

0
1

0

18

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

Spirit-Meta

• list_p, confix_p, comment_p

• list_p(item, delim)
item >> *(delim >> item)

(item - delim) >> *(delim >> (item - delim))

list_p(item[func], delim)

(item[func] - delim) >> *(delim >> (item[func] - delim))

(item - delim)[func] >> *(delim >> (item - delim)[func])

list_p(*item, delim)

(*item - delim) >> *(delim >> (*item - delim))

*(item - delim) >> *(delim >> *(item - delim)) 19

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

B

o
o

st
C

o
n

 2
0

1
0

Spirit-Meta

Spirit mailing list, 2002-10-09,

The grouping parser:

expr = add[expr.val = arg1];

add =

 group_d[mul >> '+' >> mul

 [

 add.val = arg1 + arg3

]

 | group_d[mul >> '-' >> mul

 [

 adds.val = arg1 - arg3

]

 ;

mul =

 group_d[fact >> '*' >> fact]

 [mul.val = arg1 * arg3]

 | group_d[fact >> '/' >> fact]

 [mul.val = arg1 / arg3]

 | fact[mul.val = arg1]

 ;

fact =

 ureal_p[fact.val = arg1]

 | '('

 >> add[fact.val = arg1

 >> ')'

 | '-' >> add[fact.val = -arg1]

 | '+' >> add[fact.val = arg1]

 ; 20

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

B

o
o

st
C

o
n

 2
0

1
0

Spirit-Meta

// The grouped_parser template is the real workhorse behind the group_d parsers,
// generated if the parser to group is a binary parser.
//
// The main work this template does, is to attach a special actor as a
// semantic action recursively to all leaf parsers of the original binary
// parser. This is done by the help of the post_order parser traversal
// algorithm. So during the parsing process every leaf parser calls the
// corresponding operator() functions of its respective actor, providing it
// with its parser result.
//
// The attached actors are constructed such, that they assign the parser
// result values to the corresponding member of the overall result tuple.
//
// The correct tuple member number is computed during the post_order parser
// traversal process such, that the leaf parsers are numbered from left to
// right. Such the most left leaf parser result is accessible as 'arg1' inside
// the sematic action code attached to the grouped parser, the second leaf
// parser result is accessible 'arg2' and so on.
//
// After a successful match this tuple value is fed into the usual
// Spirit semantic action mechanics and the tuple members are available from
// inside the semantic action code attached to the grouped parser.
 21

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

B

o
o

st
C

o
n

 2
0

1
0

Spirit-Meta

• Transformation of parser expressions
• Traversal of parser expressions

template <typename TransformT, typename TupleT>
struct group_transform_policies
 : public group_transform_plain_policy<TransformT, TupleT>,
 public unary_identity_policy<TransformT>,
 public action_identity_policy<TransformT>,
 public binary_identity_policy<TransformT>
{
 group_transform_policies(TupleT &tuple_)
 : group_transform_plain_policy<
 TransformT, TupleT>(tuple_)
 {}
};

• Reconstruct a different parser based on context, if needed

• Each parser needed corresponding parser factory template allowing
to reconstruct the original parser component

22

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

B

o
o

st
C

o
n

 2
0

1
0

Boost Formal Review!!!

Ready

Get set

Need I say more?

B
o

o
st

C
o

n
 2

0
1

0

23

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

Boost Formal Review

• A year after Spirit’s initial Boost introduction (May 2001 –
October 2002), hard work paid off

• Spirit was accepted into Boost

• Review manager: John Maddock

• Participants: Aleksey Gurtovoy, Andre Hentz, Beman
Dawes, Carl Daniel, Christopher Currie, Dan Gohman,
Dan Nuffer, Daryle Walker, David Abrahams, David B.
Held, Dirk Gerrits, Douglas Gregor, Hartmut Kaiser, Iain
K.Hanson, Juan Carlos Arevalo-Baeza, Larry Evans, Martin
Wille, Mattias Flodin, Noah Stein, Nuno Lucas, Peter
Dimov, Peter Simons, Petr Kocmid, Ross Smith, Scott
Kirkwood, Steve Cleary, Thorsten Ottosen, Tom Wenisch,
Vladimir Prus

B
o

o
st

C
o

n
 2

0
1

0

24

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

Wave

• Wave is a Standards conformant implementation of the mandated
C99/C++98 preprocessor functionality

• Generates sequence of C99/C++ tokens exposed by an iterator
interface

• Started in 2001 as an experiment in how far Spirit could be taken

• Initially it was not meant to be high performance

• Merely a experimental platform

• Almost no Standards conformant preprocessor available

• First full rewrite in 2003

• Implemented macro namespaces which lead to some discussions in
the C++ committee (removed now)

• Macro expansion trace, which is still a unique feature

• First official announcement of Wave on Boost list: 3/8/2003 25

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

B

o
o

st
C

o
n

 2
0

1
0

Wave: Some More History

• In Boost since 2005 (V1.33.0)

• At this time one of the 2 available fully conformant preprocessors
(gcc is the other)

• Got a comprehensive regression test suite with over 400
single unit tests

• Continuous improvement and development

• Based on user feedback

• A lot of improvements since then

• Performance now on par with commercial preprocessors (but still
slower than gcc or clang)

• Usability improvements helping to use Wave as a library

 26

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

B

o
o

st
C

o
n

 2
0

1
0

Explicit Template Instantiation

// header some_huge_template.hpp

template <typename T>

struct some_huge_template

{

 some_huge_template() {/* implementation */}

 // ...

};

• Using this template is very demanding in terms of compile time

• Wave needed 30 minutes to compile on Intel C++ V5

• Difficult to decouple as it pulls a lot of other templated stuff

27

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

B

o
o

st
C

o
n

 2
0

1
0

Explicit Template Instantiation

// header some_huge_template.hpp

template <typename T>

struct some_huge_template

{

 some_huge_template(); // function declarations only

};

// header some_huge_template_impl.hpp

template <typename T>

some_huge_template<T>::some_huge_template() {/* implementation */}

// source file some_huge_template_string.cpp

#include "some_huge_template.hpp"

#include "some_huge_template_impl.hpp"

template some_huge_template<std::string>; 28

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

B

o
o

st
C

o
n

 2
0

1
0

Wave: Known Applications

• Synopsis
• A Source-code Introspection Tool (http://synopsis.fresco.org/)

• ROSE
• A Tool for Building Source-to-Source Translators

(http://rosecompiler.org/)

• Zoltán Porkoláb
• Debugger for C++ Templates

• Hannibal
• partial C++ parser using Spirit

• Wave tool
• Full blown preprocessor

• If you know more, please drop me a note

B
o

o
st

C
o

n
 2

0
1

0

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

29

Wave: Boost Intro

• First official announcement of Wave on Boost list: Sat 3/8/2003

• “Wave is a great tool that is getting better every day.” (Paul
Mensonides)

• “And then there is always Wave (if I haven't mentioned it yet, I am
really excited about this work!).” (Aleksey Gurtovoy)

• “Congratulations! This is huge!” (Eric Niebler)

• Paul Mensonides: “I say Chaos!”
• Strict pp lib: 2/27/2003
• Chaos-PP: 4/10/2003 (first mentioned)

• Vesa Karvonen: “I say Order!”

• PP Beta reducer: 4/11/2003
• Order-PP: 4/27/2003

30

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

B

o
o

st
C

o
n

 2
0

1
0

BACK TO SPIRIT 31

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

B

o
o

st
C

o
n

 2
0

1
0

Attribute Grammars

• Spirit synthesized attributes for primitive parsers
• int_p

• symbol_p

• Everything else uses transduction
• a >> b

• a | b

• This Presents an awkward situation
• int x, y;

• int_p[var(x) = arg1 // OK

• (int_p >> int_p)[var(x) = arg1, var(y) = arg2 // No good

• We need tuples, but tuples ain’t enough

• We need a library like MPL that can deal with values
• Heterogeneous data structures

• Algorithms on heterogeneous data structures

B
o

o
st

C
o

n
 2

0
1

0

A
 F

ra
m

e
w

o
rk

 f
o

r
R

A
D

 S
p

ir
it

32

Attribute Grammars

• Challenge:

• (a >> b >> c)[var(x) = arg1, var(y) = arg2, var(z) = arg3]

• Walk both the ET tree and the attribute tuple
• How?

• Solution:
• flatten the ET tree ET sequence

• Walk the ET and attribute sequences in parallel
• Data structures:

• ET sequence [A, B, C]

• Attribute Sequence: [X, Y, Z]

• Algorithm: bool any(et, attr, pred)
• pred: return true if “any” of et fails (to parse)

• Fusion!

B
o

o
st

C
o

n
 2

0
1

0

A
 F

ra
m

e
w

o
rk

 f
o

r
R

A
D

 S
p

ir
it

33

Fusion

• Initially developed as a proof of concept in 2002
• Based on MPL and seminal work by Doug Gregor

• Bridges the gap between compile time (MPL) and runtime
(STL) using similar concepts (sequences, iterators and
algorithms)

• Just the perfect infrastructure for Phoenix2 and Spirit2
• Both are rewrites extensively using Fusion

• Accepted into Boost in May 2006

B
o

o
st

C
o

n
 2

0
1

0

A
 F

ra
m

e
w

o
rk

 f
o

r
R

A
D

 S
p

ir
it

34

Fusion

• Fusion is a library for working with heterogenous collections
of data, commonly referred to as tuples. A set of containers
(vector, list, set and map) is provided, along with views that
provide a transformed presentation of their underlying data.
Collectively the containers and views are referred to as
sequences, and Fusion has a suite of algorithms that operate
upon the various sequence types, using an iterator concept
that binds everything together.

• The architecture is modeled after MPL which in turn is
modeled after STL. It is named "fusion" because the library is a
"fusion" of compile time metaprogramming with runtime
programming.

B
o

o
st

C
o

n
 2

0
1

0

A
 F

ra
m

e
w

o
rk

 f
o

r
R

A
D

 S
p

ir
it

35

ET Invasion

• A plethora of ETs
• Bind / Lambda / Phoenix

• Expressive

• Spirit
• Qi

• Karma

• ETs Unite!
• Let all ye _1 and _2 be unified

• Proto

B
o

o
st

C
o

n
 2

0
1

0

A
 F

ra
m

e
w

o
rk

 f
o

r
R

A
D

 S
p

ir
it

36

Proto

• Proto is a framework for building Domain Specific Embedded

Languages in C++. It provides tools for constructing, type-
checking, transforming and executing expression templates

• Boost.Proto eases the development of domain-specific
embedded languages (DSELs)
• Never again shall we write yet another operator overload

• Never again shall we write an “inordinate amount of unreadable
and un-maintainable template
mumbo-jumbo.”

• Best of all, all our mini-
languages seamlessly inter-
operate. Case in point: Qi and
Karma

B
o

o
st

C
o

n
 2

0
1

0

A
 F

ra
m

e
w

o
rk

 f
o

r
R

A
D

 S
p

ir
it

37

Proto

• April 20, 2005: Proto is born as a major refactorization of Boost.Xpressive

• October 28, 2006: Proto is reborn, this time with a uniform expression types
that are POD.

• November 1, 2006: The idea for proto::matches<> and the whole grammar
facility is hatched during a discussion with Hartmut Kaiser on the spirit-
devel list.

• December 11, 2006: The idea for transforms that decorate grammar rules is
born in a private email discussion with Joel de Guzman and Hartmut Kaiser.

• April 4, 2007: Preliminary submission of Proto to Boost.

• April 15, 2007: Boost.Xpressive is ported from Proto compilers to Proto
transforms. Support for old Proto compilers is dropped.

• January 11, 2008: Boost.Proto v3 brings separation of grammars and
transforms and a "round" lambda syntax for defining transforms in-place.

• March 1, 2008: Proto's Boost review begins.

• April 7, 2008: Proto is accepted into Boost.

B
o

o
st

C
o

n
 2

0
1

0

A
 F

ra
m

e
w

o
rk

 f
o

r
R

A
D

 S
p

ir
it

38

Tirips, or Spirit spelled backwards

• First ideas: mid 2004

• Inspired by StringTemplate library (part of ANTLR)

• First implementation late 2004, since then developed in sync with
the parser library

• Named Karma in early 2005, which prompted the name Qi for the
parser part

39

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

B

o
o

st
C

o
n

 2
0

1
0

Tirips is a library for flexible generation of arbitrary character
or token sequences. It's very similar to the Spirit parser
library in the sense, that it uses a 'grammar' describing the
structure of the expected output. It is based on the idea, that
a grammar used for parsing of a certain input sequence may
be used to regenerate this input sequence as well.

Karma: Generating Output

• Today a symmetric part of Spirit

• “Yang to Qi’s Yin” (Eric Niebler)

• A versatile tools for almost everything from straight output of
primitive data items to creating formatted output for complex
data structures

• Why use a tool like Karma for generating output?

• The more complex the output requirements are the more difficult
it is to write maintainable code

• Karma is fast!

• Karma is header only, same as whole Spirit

 40

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

B

o
o

st
C

o
n

 2
0

1
0

Finally: A Lexer

• We have been discussing this on and off

• Wave developed techniques to integrate a lexer with Spirit

• Lexertl: Ben Hansons excellent lexer engine

• It is a lexical analyser generator inspired by flex.

• The aim is to support all the features of flex, whilst providing a
more modern interface and supporting wide characters.

• Much faster than flex

• Proposed for Boost review

• Spirit.Lex is just a wrapper

41

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

B

o
o

st
C

o
n

 2
0

1
0

Acknowledgements
This version of Spirit is a complete rewrite of the Classic Spirit many people have been contributing to (see below). But there are
a couple of people who already managed to help significantly during this rewrite. We would like to express our special
acknowledgement to:

• Eric Niebler for writing Boost.Proto, without which this rewrite wouldn't have been possible, and helping with examples,
advices, and suggestions on how to use Boost.Proto in the best possible way.

• Ben Hanson for providing us with an early version of his Lexertl library, which is proposed to be included into Boost (as
Boost.Lexer). At the time of this writing the Boost review for this library is still pending.

• Francois Barel for his silent but steady work on making and keeping Spirit compatible with all versions of gcc, older and
newest ones. He not only contributed subrules to Spirit V2.1, but always keeps an eye on the small details which are so
important to make a difference.

• Andreas Haberstroh for proof reading the documentation and fixing those non-native-speaker-quirks we managed to
introduce into the first versions of the documentation.

• Chris Hoeppler for taking up the editorial tasks for the initial version of this documentation together with Andreas
Haberstroh. Chris did a lot especially at the last minute when we are about to release.

• Michael Caisse also for last minute editing work on the 2.1 release documentation.

• Tobias Schwinger for proposing expectation points and GCC port of an early version.

• Dave Abrahams as always, for countless advice and help on C++, library development, interfaces, usability and ease of use,
for reviewing the code and providing valuable feedback and for always keeping us on our toes.

• OvermindDL for his creative ideas on the mailing list helping to resolve even more difficult user problems.

• Carl Barron for his early adoption and valuable feedback on the Lexer library forcing us to design a proper API covering all of
his use cases. He also contributed an early version of the variadic attribute API for Qi.

• Daniel James for improving and maintaining Quickbook, the tool we use for this documentation. Also, for bits and pieces
here and there such documentation suggestions and editorial patches.

• Stephan Menzel for his early adoption of Qi and Karma and his willingness to invest time to spot bugs which were hard to
isolate. Also, for his feedback on the documentation.

• Ray Burkholder and Dainis Polis for last minute feedback on the documentation.

• Steve Brandt for his effort trying to put Qi and Karma to some use while writing a source to source language transformation
tool. He made many incredible suggestions helping to improve the usability of both libraries.

Special thanks to spirit-devel and spirit-general mailing lists for participating in the discussions, being early adopters of pre-
release versions of Spirit2 from the very start and helping out in various tasks such as helping with support, bug tracking,
benchmarking and testing, etc. The list includes: Larry Evans, Richard Webb, Martin Wille, Dan Marsden, Cedric Venet, Allan
Odgaard, Matthias Vallentin, Justinas V.D., Darid Tromer.

• Joao Abecasis for his early support and involvement in Spirit2 development and for disturbing my peace every once in a
while for a couple of jokes.

The list goes on and on... if you've been mentioned thank Joel and Hartmut, if not, kick Joao :-)

Special thanks for working on Spirit.Classic to:

• Dan Nuffer, Hartmut Kaiser, Martin Wille, Martijn W. Van Der Lee, Giovanni Bajo, Juan Carlos Arevalo-Baeza (JCAB),
Vaclav Vesely, Raghavendra Satish, Noah Stein, Hakki Dogusan, John (EBo) David, Chris Uzdavinis, Carsten Stoll, Andy
Elvey, Bruce Florman, Jeff Westfahl, Peter Simons, Markus Schöpflin, Doug Gregor, David Abrahams, Aleksey Gurtovoy,
Gustavo Guerra, Nicola Musatti, Paul Snively, Alisdair Meredith, Hugo Duncan, Steve Rowe, Jonathan de Halleux, Angus
Leeming, Joao Abecasis, Guillaume Melquiond, Peder Holt, and to Joels wife Mariel.

Special thanks also to people who gave feedback and valuable comments, particularly members of Boost and Spirit mailing lists.
This includes all those who participated in the Boost review:

• John Maddock, Aleksey Gurtovoy, Andre Hentz, Beman Dawes, Carl Daniel, Christopher Currie, Dan Gohman, Dan Nuffer,
Daryle Walker, David Abrahams, David B. Held, Dirk Gerrits, Douglas Gregor, Hartmut Kaiser, Iain K.Hanson, Juan Carlos
Arevalo-Baeza, Larry Evans, Martin Wille, Mattias Flodin, Noah Stein, Nuno Lucas, Peter Dimov, Peter Simons, Petr
Kocmid, Ross Smith, Scott Kirkwood, Steve Cleary, Thorsten Ottosen, Tom Wenisch, Vladimir Prus.

42

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

B

o
o

st
C

o
n

 2
0

1
0

Thank You!

43

Sp
ir

it
: H

is
to

ry
 a

n
d

 E
vo

lu
ti

o
n

B

o
o

st
C

o
n

 2
0

1
0

